
A THEOREM CONCERNING SIX POINTS

FRED SUPNICK

1. Introduction and statement of results. "Let three points be

specified on a line. Then one of the points is in the interior of the

line segment joining the other two, and one of the points is exterior

to the line segment joining the other two." This elementary statement

concerning the ordering of three points on a line is capable of various

extensions. Thus, e.g., it is easy to prove the following: Let « + 2

points which are not all on an «-sphere be specified in E„, with some

« + 1 of them linearly independent. Then one of the points must be

in the interior of the «-sphere passing through the other « + 1 points,

and one of the points must be exterior to the «-sphere passing through

the other w + l points.

In this paper we consider the following problem: Let six points be

specified in a plane, no three collinear and not all on a conic. Must

some one of these points be in the "interior" of the conic (i.e. in

a convex component of the plane bounded by the conic section) pass-

ing through the remaining five, and must some one of the points be

"exterior" to the conic (i.e. in the nonconvex component of the plane

bounded by the conic) passing through the other five? This question

cannot always be answered in the affirmative. We shall see that it is

impossible for each point to be outside the conic through the other

five, but it is possible for each point to be inside the conic through the

other five.

Before stating our result precisely we make the following definition:

Let five points no three collinear be specified having either five or

three of these points on the boundary ß of their convex hull. If ß is a

pentagon denote its vertices by A, B, C, D, E taken cyclically about

ß; if ß is a triangle denote the two interior points by D and E and

the other three by A, B, C such that the half-lines DE~* and ED-"

intersect the sides AB and BC of ß respectively (here and below

"XY^" designates the (closed) half-line which is bounded by X and

contains Y, X and Y being noncoincident points). Then the inter-

section of the open angular regions CAD, DBE, ACE each of opening

less than 180° is called the nucleus of the 5-point configuration and

denoted by N(ABCDE).
We first prove the following lemma:
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Lemma 1. Let a triangle Ti(ABC) (A, B, C are the vertices) contain

a triangle T2(DEF) in its interior, no three elements of

T: {A, B, C, D, E, F} collinear. If one of the vertices of T2 is inside the

nucleus of the other elements of T, then each vertex of T2 is inside the

nucleus of the other elements of T.

Throughout this paper the symbol So will denote a set of six points

in a plane (E2), no three of the points collinear and not all on a conic;

"¿>" will denote the boundary of the convex-hull of 56.

If one element of So is in the interior of the conic through the other

five, and one element of So is in the exterior of the conic through the

other five then we say that 56 is simply-selfcovering. If each element

of So is in the interior of the conic through the other five then we say

that So is completely-self covering.

We prove the following theorem:

Theorem, (i) If b has A or 6 vertices, then So is simply-selfcovering.

(ii) If b has 3 or 5 vertices, then So is completely- or simply-selfcovering

accordingly as any element of So not on b belongs to, or does not belong

to the nucleus of the other five.

2. Proof of Lemma 1. We let

(i) ¿[PC}] denote the set of points on the line passing through the

points P and Q;

(ii) [PQ] denote all points of ¿[PC}] between (but not including)

P and Q;
(iii) [PQi?] denote the set of all points of the plane interior to (but

not including) the triangle with vertices P, Q, R;

(iv) [PQRS] denote the set of all points of the plane interior to

(but not including) the simply closed quadrilateral with vertices

P, Q, R, S taken cyclically about it;

(v) (QPR) (P, Q, R not collinear) denote the convex open set of

all points of the plane bounded by PQ~* and PR~*.

Since no three vertices of T are collinear, we may assume that

the vertices of 7\ are labelled such that the half-lines DE~" and ED~"

intersect [AB] and [BC] respectively. Also, let FCN(ABCDE).

(1) Since FCN(ABCDE)C[ECA], EF~ intersects [CA]. Let
¿[j4E] intersect [BC] in J; let ¿[5£] intersect [AC] in K; since

FCN(ABCDE)C[CKEJ], F£^ intersects [AB].
(2) Since ED^ intersects [BC], DC [BCE]C(BCE).

(3) Since FC[CEK], and KCBE", BF" separates D and E and

intersects [CE] in a point, say H. Thus, DC [CBH]C(CBF).
(4) Let CD^ and BD~* intersect [BA ] and [CA ] in Z and F re-

spectively. Since ££>"* intersects [BC],
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E G [ZDYA] E [ZCA] = [CDA] + [DA] + [DAZ].

As [CDEA ] is strongly convex and can be partitioned thus: [CDEA ]

= [CDA] + [DA]+[DEA\, we have EE[DAZ]. Since FE[CDA],
[AD] intersects [EF], and therefore DE(EAF).

Thus, in view of (1), (2), (3), (4) (above this section), D

EN(ABCEF).
In similar manner we can prove that EEN(ABCDF).

3. "Projectively-cyclic" ordering of five points. Let S6 denote a set

of five points in a (Euclidean) plane ir, no three of the points being

collinear. A conic V is uniquely determined by the elements of Sb.

Let 7T be "closed" by adjoining the "line at infinity," and let us de-

note the projective plane thus obtained by irp. Let V be the conic in

7TP such that r'Dr. An ordering (Qi, Q2, Q3, Qit Ç6) of S5 will be re-

ferred to as projectively-cyclic if V partitions into abutting but non-

overlapping arcs

QlQ»,   Ö2Ö3, Ö3Ö4, Ç406, QtQl.

Remark. Thus, e.g. the points

(-1,0), (-2,1) (1,0), (2,1), (-2,-1)

on x2—y2=l are projectively-cyclic in the stated order. If we denote

the branches of x2 —y2 = l by Bi and B2, then the element of Sb-Bi

with largest ordinate is "adjacent" to the element of Ss-52 with small-

est ordinate (cf. [l]).

We now show how to order the elements of Sg so that the ordering is

projectively-cyclic on the conic through them.

Let ß be the boundary of the convex hull of S6.

Case I. Suppose ß is a pentagon. In this case the points of S5 are

on an ellipse, parabola or one branch of a hyperbola. (For, if they

fell on both branches of a hyperbola, ß could not be a pentagon.)

Then, any cyclic ordering (Qi, Q2, Q¡, Qi, Qi) of the vertices of ß (i.e.

QiQi+i are the edges of ß, Qt = Qi) is a projectively-cyclic ordering of

St.
Case II. Suppose ß is a quadrilateral. Then the elements of S s

obviously cannot fall on an ellipse, parabola or one branch of a

hyperbola. Furthermore, it is not possible for one element of S¡ to

be on one branch of a hyperbola and the remaining four on the other,

for, in this case, ß would be a triangle. Thus two elements of Ss must

be on one branch of a hyperbola, and three on the other. Now, let

O be the intersection of the diagonals of ß; let Cand D be the adjacent

vertices of ß such that [OCD] contains the element E of S6 which is
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not on ß; let ß be the polygon (.4, B, C, D). There are ten ways of

partitioning St^S^+S^ (*-l, 2, • • • , 10), Sf and Sjf> containing
two and three elements respectively. If for each case we assume that

Sffî is on one branch of a hyperbola and S® is on the other, then for

nine values of i we obtain a contradiction of the fact that a straight

line can cut a conic section in at most two points. The remaining

case, where A and B are on one branch and C, E, D on the other, must

therefore hold. Furthermore, from the same fact it may be deduced

that E is "between" C and D on the branch on which they lie. Thus,

the ordering (A, B, D, E, C) (or any cyclic permutation) is projec-

tively-cyclic.

Case III. Suppose ß is a triangle. Then S6 cannot fall on an ellipse,

parabola or one branch of a hyperbola; or, on two branches of a

hyperbola with two and three points on separate branches. The only

remaining case is where one point of 56 is on one branch of a hyperbola

and four on the other. Let X and Y be the points of So not on ß.

Then one of the points of So, say P, must be on one side of the line

l(X, Y) and two, say Q and R, on the other. Let the half-line YX~"

intersect ß in the edge PQ. Then P is on one branch of a hyperbola

and R, Y, X, Q on the other (this is again obtained by considering

the five possibilities and eliminating four of them from the fact that

a line cuts a conic in at most two points). Furthermore, since the

polygon (R, Y, X, Q) is convex, R, Y, X, Q must be the ordering of

these points on the branch on which they lie. Thus, the ordering

(P, R, Y, X, Q) is projectively-cyclic.

Let A(Q, R, S, T, U, V) be the determinant with ith row

2     2
Xi    yi    xtyi    Xi    yi    1

where (x<, y¿) are the coordinates of the point in the ith position from

the left in (the parentheses of) A( ).

Lemma 2. Let the ordered point set (Wi, ■ ■ ■ , Wo) (no three collinear)

in E2 be projectively-cyclic, and let T denote the conic through them.

Then A(P, Wi, • ■ • , Wo) is greater than, equal to or less than zero

accordingly as P is inside, on or outside T, and conversely.

Proof. Since translations, rotations and proper dilatations

(x'=ax,y'=7y,a>0,7>0) do not alter the sign of A(P, Wi, • • • , W&),

we may assume that V is in standard position with (absolute values

of) conic constants conveniently chosen. Furthermore, if Wi is

moved along T to Wi and at no point of this path does Wi cross its

adjacent points PF,_i or Wi+i (Wo=Wo, Wo— Wi) then the sign of

A(P, Wi, ■ ■ ■ , W&) is unaltered. Thus, if the points Wi, • • • , Ws
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are moved along T to new positions but at no instant does IF, coin-

cide with Wj (iyzj) then the sign of A(P, Wi, • ■ • , W6) remains un-

altered. Verification of the sign of A(P, W\, • ■ ■ , W&) for simple

conies and conveniently chosen points Wi, - - • , W& on them, for

Cases I, II, III above, completes the proof of the lemma.

Definition. Let S6=- {.4, B, C, D, E, F}. We shall say that A and

B are similarly oriented if there are ordered sets (Z\, ■ ■ ■ , Z4) and

(Ziv ■ • ■ , Z,-4)({Zi, • • • , Z4} = { C, D, E, F}) each obtainable from

the other by an even number of adjacent interchanges such that

(A, Zi, ■ • • , Z4) and (B, Ziv - - ■ , Z{¿) are projectively-cyclic.

Lemma 3. If S$ contains two elements which are similarly oriented,

then it is simply-self covering.

Proof. Let A and B belong to S6 and be similarly oriented. Then

(A, Fi, F2, F3, Vi) and (B, F,„ FÍ2, F<3, Vit) are projectively-cyclic,

where (Viv F¿2, Vis, F,-4) can be obtained from (Fi, F2, F3, F4) by an

even number of adjacent interchanges ({^4, B, Vi, F2, F3, F4} =S6).

But

A(A, B, Viu Vi2, Vh, Vi,) = A(A, B, Vu F2, F3, F4)

= - A(B, A, Fi, F2, F3, Vi).

By Lemma 2 if A is inside the conic Ti through B, Vtv V^, F¿3, F,-4

(it can't be on Ti by definition of S6), thenA(5,^, Fi, F2, F3, F4)<0,

and B is therefore outside the conic T2 through A, Vi, F2, F3, F4.

Similarly, if ^4 is outside Ti, then B is inside IV

4. Proof of the Theorem. Let S6 = { U, V, W, X, Y, Z}.

Case I. Suppose o is a hexagon. Then any two adjacent vertices of

b are similarly oriented. By Lemma 3, S$ is simply-self covering.

Case II. Suppose & is a pentagon (UVWXY). (i) ZEN(UVWXY).

Then Z is outside a convex quadrilateral (CDEF), {C, D, E, F}

E{U, V, W,X, Y}. Let BE{U, V, W, X, Y}, BE{C, D, E, F}.
Then B and Z are similarly oriented.

(ii) ZEN (UVWXY). Z is obviously inside the conic through

U, V, W, X, Y. We show that U is inside the conic through F, W, X,

Y, Z: Let A be a point on the half-line WV~~* with F between IF

and A. Let J be a point on XY~^ with F between X and /.If FIF~*

and YX~* intersect in a point (or if l(VW) and /(A"F) are parallel)

then U is inside the (open) convex region bounded by VA~*+ [VY]

+ YJ~* which is in the interior of the hyperbola V passing through

F, Z, Y, W, X (cf. Case II, §3). If VA^ and YJ~* intersect in a point

I, then U belongs to [IFF] (since b is convex and no three elements
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of So are collinear) which is in the interior of T. In similar manner it

may be shown that V, W, X and Y are each in the interior of the

conic through the other five elements of 56.

Case III. Suppose b is a quadrilateral (WXYZ). Let the diagonals

[IFF] and [XZ] intersect in the point 0.

(i)  If ¿7 and V are both in the same one of the triangular regions

(4.1) [OWX], [OXY], [OYZ], [OZW],

then they are similarly oriented (cf. Case II of §3).

(ii) Suppose ¿7 and V do not fall in the same element of (4.1), and

the boundaries of the elements of (4.1) in which they do fall have

only the point 0 in common. Suppose e.g. that ¿7£ [OZW] and

VC [OXY]. Then (U, W, Y, X, Z) and (V, Y, W, Z, X) are projec-
tively-cyclic orderings (cf. Case II, §3). But by an even number of

adjacent interchanges: VYWZX-^VWYZX-*VWYXZ. Thus U

and V are similarly oriented. The other cases of (ii) are handled

similarly.

(iii) Suppose U and V do not fall in the same element of (4.1) and

that the boundaries of the elements of (4.1) in which they do fall

have an edge in common. Thus, e.g., let ¿7£ [OJFX] and VC [OXY].

If the boundary of the convex hull of W, Z, Y, V, £7 has these five

points as its vertices, then X and Z are similarly oriented since

(Z, W, U, V, Y) and (X, W, U, V, Y) are projectively-cyclic (cf.

Cases I and III of §3). If the boundary of the convex hull of W, Z,

Y, V, ¿7 has only four vertices e.g. W, V, Y, Z, then Z and X are

similarly oriented since (Z, V, U, W, Y) and (X, V, U, W, Y) are

projectively-cyclic (cf. Cases II and III of §3). The other cases of

(iii) are handled similarly.

Case IV. Suppose ¿» is a triangle (XYZ). Let ¿7 and F be designated

so that ¿7and V make with X and Z a convex quadrilateral (UZXV).

Let

[ZV]-[XU] = K,        [YU]-[ZV] = L,        [YU]-[ZX] = M,

[YV]-[ZX] = N,        [YV]-[UX] = P,       [XV]-[YK] = Q,

[ZU] ■ [YK] = R, [XV] -[YZ]= S, [ZU] ■ [YX] = T.

(i) Suppose WCN(UVXYZ). (a) If WC[ZLM] then W and Z
are similarly oriented. If WC [XPN] then W and X are similarly

oriented, (b) If WC [ZKQS], then W and ¿7 are similarly oriented.

If WC[XKRT], then W and F are similarly oriented, (c) If

WC[SQY], then W and F are similarly oriented. If WC[YRT],

then W and F are similarly oriented.
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(ii) Suppose WEN(UVXYZ). We show that each element of Se is

inside the conic through the other five, (a) W is inside the hyperbola

T (cf. Case III, §3) passing through Z, U, V, X, Y (since Z, U, V, X

are all on one branch of T, [ZUVX] is convex and ZE [ZUVX]). In

similar manner using Lemma 1, it may be shown that U and F are

each inside the conic through the other five elements of Se. (b) We

now show that Y is inside the hyperbola 6 through X, Z, U, V, W.

By Case II of §3, Z, W, X are on one branch di of 9 and U, V on 02

the other branch. Now, YU^ intersects [ZW] in a point G which is

inside di, where U is between F and G. Therefore YU^ intersects di

in a point H, where U is between Y and H. Thus F is inside 02. In

similar manner using Lemma 1, it may be shown that X and Z are

each inside the conic through the other five elements of S$.
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