A NOTE ON COMPLETIONS OF MODULES
JOSEPH J. ROTMAN

Let R be a discrete valuation ring, i.e., a local principal ideal do-
main. In what follows, module shall mean unitary R-module. Follow-
ing Kulikov, any module M contains a basic submodule B! i.e., a
pure submodule which is the direct sum of cyclic modules and such
that M/B is divisible. Basic submodules need not be unique, but any
two basic submodules of a module M are isomorphic. We now assume
that M has no elements of infinite height, i.e., Np»M =0. Under this
assumption, the submodules p*M can be considered as a system of
neighborhoods of 0 making M into a metric topological module. Thus
we may form the completion M* of M; M is complete if M*= M. If
a submodule S of M is pure, then the topology on .S induced by the
system of neighborhoods S is the same as that induced on S con-
sidered as a subspace of M. Also a submodule S is dense in M iff M/S
is divisible. In particular, a basic submodule is a dense subspace.

Along with some new theorems, we also include some new short
proofs of old theorems in the above spirit.

THEOREM 1. Any complete module M is the completion of a direct sum
of cyclic modules. Two complete modules are isomorphic if they have
isomorphic basic submodules.

ProOF. Let M be complete with basic submodule B. Since B is a
subspace, B¥* C M*= M. But B is dense, and so B*= M. The second
statement follows from the fact that any two basic submodules of
M are isomorphic.

THEOREM 2. If S is a pure complete submodule of M, then S is a
direct summand of M.

Proor. Let B be a basic submodule of S; since S is pure, we may
extend B to a basic submodule C of M, and B®B’=C. Since all
topologies match, by purity, S=S*=B%*, since S is complete. But
M*=C*=(BO®B)*=B*@®B'*=S®B’*. Thus S is a summand of
M*, a fortiori, a summand of M.

THEOREM 3. Any reduced torsion-free R*-module M of finite rank is
free.

Received by the editors August 28, 1959.
1 The standard existence theorem is for modules over complete discrete valuation
rings, but it is easy to see the completeness is unnecessary.
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ProOF. Induction on the rank r of M. If S is pure of rank r—1,
then S is free, by induction. Since R* is complete and the rank of S
is finite, S is complete. By Theorem 2, S is a summand of M. Hence
M is free.

In investigating structure problems of torsion-free R-modules, I
came across the following phenomenon. Let M be an indecomposable
torsion-free R-module of rank 2 of the type exhibited by Kaplansky
in [2]. If we form the completion we find M*=R*; the rank de-
creases. Incidentally, this example shows that there is no connection
between taking the completion of a module and tensoring the module
by the completion of the ring, R*. Basic submodules explain this
lowering of rank.

THEOREM 4. Let M be o torsion-free R-module of finite rank with
basic submodule B. Then rankr*M*=rankr B. Further, rankgs M*
=rankr M iff M is free.

Proor. Since B is dense in M, M*=B*, Since B is free of finite
rank, B*=(ZR)*=3R*, so that rankg* M*=rankg B. If rankg* M*
=rankgz M, then rankg M =rankgz B. However, a pure submodule
B of M of the same rank must be M, i.e., B=M, and so M is free.

We now show the algebraic structure of a complete module.

LEMMA 5. Let B=ZCa, C, cyclic. Then B* is the submodule of TIC}
consisiing of all elements x = {xa} whose coordinates are countably non-
zero, and, given any subset of the coordinates, almost all are divisible
by p*, for any integer n.

Proor. It is straightforward to check that the above submodule
is complete and contains B as a pure dense submodule.

COROLLARY. Let B=Z2C,. B* is a summand of ILCE.

ProoF. By Theorem 2, we need only show that B* is pure in IIC}.
But this is obvious, by Lemma 5.

COROLLARY. ZR* is contained in a proper summand of IIR*,

The above corollary is false for abelian groups. Los has shown that
the weak direct sum of countably many copies of the integers is con-
tained in no proper summand of the strong (complete) direct sum
of the integers.

LEMMA 6. Let M be a complete module with submodule S. M/S has
no elements of infinite height iff S is closed.

Proor. =Let w: M—M/S be the natural homomorphism. Since
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M/S has no elements of infinite height, 0 is closed in the p-adic
topology in M/S, and so S=#"1(0) is closed in M.

<Suppose p"br=a*, for all #, where * denotes coset mod S.
Then p"b.+s.=a, s.ES. Hence p* b1+ 51— (p*ba+5.) =0, and
SO Sny1—S$,Ep*M. Hence {s,} is Cauchy and so there is an x&EM
such that s,—x, since M is complete. Since S is closed, x&.S. Hence
p"bp+s,—x=a—x. Taking the limit, the left side tends to 0. Hence
a=x, i.e., aES. Therefore a*=0.

THEOREM 7. Let M be complete, S a closed submodule. Then M/S is
complete.

ProOF. By the lemma, M/S is a metric space. Suppose {ar} is
Cauchy in M/S, i.e., afi,—af=p*™b}, and k(n)— . By induction
on 7, we show that there are representatives a, of a) such that
Anp1—a, EPFM M. Select a, arbitrarily so that a;—af. Suppose we
have chosen a;, i<#, such that a;—a,1Ep*¢DM. Lifting af,,
arbitrarily to a.41, we obtain @, —a,=p*Mb,+s,, s.,ES. Define
Gni1=0,41—5S,. Then a,11—ak,,, and a,41—a,Ep*™ M. Since at each
step we are extending the given set of representatives, we have con-
structed a sequence {a.} in M such that a,—ay and {@.} is Cauchy
in M. Since M is complete, lim @¢,=a. Since 7: M—M/S is continu-
ous, lim a) =a*. Hence M/S is complete.

As an application of Theorem 7, we now give a conceptually simple
proof of a theorem of Baer, Hilfssatz 4.1, [1]. The question under
consideration was: does the group of sequences of integers II, have
the property that if G/T=1I, then T is a direct summand, where T
is the torsion subgroup of G? In attacking this problem, Baer needed
the following crucial lemma. For fixed prime p, let C denote the sub-
group of II consisting of all elements almost all of whose coordinates
are divisible by p*, # any integer >0. If T is p-primary with no ele-
ments of infinite height, and f: C—T, then f(C) has bounded order.
We now prove this lemma.

ProoF. Let G be an abelian group with no elements of infinite p-
height, p a fixed prime. We equip G with the p-adic topology and
form its completion G*. If G is the integers, G* is the p-adic integers.
If G is free of countable rank, then G* consists of all sequences in a
strong direct sum of a countable family of copies of the p-adic
integers such that almost all of its terms are divisible by p*, » any
integer >0. Thus C=IIN(Z integers)*. Note that both the com-
pletion and T are modules over the p-adic integers.

We claim that f: C—T can be extended to 2*, the completion of
the free group. If y&EX*, then y= {y.-}. If 9 has only one nonzero
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coordinate y;, we define f(y) as follows: suppose p*f(x;) =0, where x;
is a generator of the ith factor of II. Now y,;=0x;, 6 a p-adic integer.
Take integers 7, such that r,—d. For large n, 6 —7,&E (p*). Define
S =f(rax:). Now consider a general y. For each 7, choose an integer
r; such that f(y;) =f(r:x;). Define f(y) = f({r;x,-} ). It remains to prove
independence of choices. Suppose f(rix;)=f(r!x;) for all 7. Claim
fri—rx:}) =0. If yEC, h(y— Y ., ¥:)— o, where h is the height
function. Hence h(f(¥) — Dty f(¥:))— . If f(y;)=0 for all 4, then
k(f(»)) is infinite. Since T has no elements of infinite height, f(y) =0.
Thus the extension is well-defined. It is easy to check that f is a
p-adic integer homomorphism.

By Theorem 7, f(Z*) is complete. But the only complete torsion
modules have bounded order. In particular, f(C) is of bounded order.

LeMMA 8. Let M be a complete module with basic submodule B, and
let T be a module with no elements of infinite height. If f: B—T, f is
extendable to M +ff (f(B))*CT.

Proor. =If f is extendable, f(M) is complete. Hence (f(B))*
CUM)*=f(M)CT.

&Suppose (f(B))*CT. Let [x.] be an independent generating set
of B. If yEM, y= {raxa}, r«ER. Further, there is a sequence {a;}
of distinct indices such that r,=0 if a7 «; for some 7, and also almost
all the r,, are divisible by p* for any positive integer n. Hence
f(ra%e;)—0 in f(B). Thus { > k1 f(raixa,)} is Cauchy in f(B). There-
fore there is a z&(f(B))*CT such that Y ., f(7ae,) =32 Define
f(y)==.

THEOREM 9. Let M be complete with basic submodule B, T a complete
module. Then any f: B—T has a unique extension over M.

PROOF. An extension exists, by the lemma. It is unique since any
homomorphism is continuous, and B is dense.

COROLLARY. Let M be complete with basic submodule B, T a complete
module. Then Hom (M, T)=Hom (B, T), the isomorphism being in-
duced by the inclusion map j: B— M.

Given f: B—T (notation the same as in Theorem 9), one may ask
whether the extension g: M—T inherits any of the properties of f,
or vice versa.

LemMA 10. If B s basic in M, M and T complete with f: M—T, then
f(B*) = (f(B)*.

Proor. (f(B))*C(f(M))*=f(M)=f(B*). On the other hand, if
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SEf(B*), then there is a bEB* such that f(b) =s, and there is a
sequence {b,.} in B such that b,—b. Hence f(b,)—f(b)=s. Hence

se(fB)*.

THEOREM 11. With the notation above, if f is an epimorphism, so is
g; if g is a monomorphism, so is f.

ProoF. Trivial, using Lemma 10.

More interesting is the fact that both converses of Theorem 11 are
false.

Let B be free of countable rank, and let B’ CB be such that B/B’
is the quotient field of R. Thus B’ is basic in B. Let M =B*. Both
B and B’ are basic submodules of M. Let f: B—»B be a monomor-
phism with im f=B’, and let g: M— M extend f. g is an epimorphism,
since im g is complete and contains the dense submodule B’. How-
ever f is not an epimorphism.

Let B be free on generators x;, =1, 2, - - -, and let M=B*.
Define f: B—B by f(x1) =px1; f(Xk41) =pXes1—Xk. f is a monomor-
phism, and it is easily checked by induction that f(pFxi)=p*+lx;
— Y ELf(p'x). Now y={pix;} #20€ M. Further Zpix,—y, and so
FEpixi)—g(y). But Z¥(pix,) =f(prxr) +2Z*'f(pixs) = p*+'xx—0. Hence
g(¥)=0, and g is not a monomorphism.
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