
A NOTE ON COMPLETIONS OF MODULES

JOSEPH J. ROTMAN

Let R be a discrete valuation ring, i.e., a local principal ideal do-

main. In what follows, module shall mean unitary i?-module. Follow-

ing Kulikov, any module M contains a basic submodule B,1 i.e., a

pure submodule which is the direct sum of cyclic modules and such

that M/B is divisible. Basic submodules need not be unique, but any

two basic submodules of a module M are isomorphic. We now assume

that M has no elements of infinite height, i.e., C\pnM=0. Under this

assumption, the submodules pnM can be considered as a system of

neighborhoods of 0 making M into a metric topological module. Thus

we may form the completion M* of M; M is complete if M * = M. If

a submodule 5 of M is pure, then the topology on 5 induced by the

system of neighborhoods pnS is the same as that induced on S con-

sidered as a subspace of M. Also a submodule 5 is dense in M iff M/S

is divisible. In particular, a basic submodule is a dense subspace.

Along with some new theorems, we also include some new short

proofs of old theorems in the above spirit.

Theorem Í. Any complete module Mis the completion of a direct sum

of cyclic modules. Two complete modules are isomorphic if they have

isomorphic basic submodules.

Proof. Let M be complete with basic submodule B. Since B is a

subspace, B*CM* = M. But B is dense, and so B* = M. The second

statement follows from the fact that any two basic submodules of

M are isomorphic.

Theorem 2. If S is a pure complete submodule of M, then S is a

direct summand of M.

Proof. Let Sbea basic submodule of S; since 5 is pure, we may

extend B to a basic submodule C of M, and B®B' = C. Since all

topologies match, by purity, S = S*=B*, since S is complete. But

M* = C* = (B®B')*=B*@B'* = S®B'*. Thus S is a summand of
M*, a fortiori, a summand of M.

Theorem 3. Any reduced torsion-free R*-module M of finite rank is

free.
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1 The standard existence theorem is for modules over complete discrete valuation

rings, but it is easy to see the completeness is unnecessary.
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Proof. Induction on the rank r of M. If 5 is pure of rank r — 1,

then 5 is free, by induction. Since R* is complete and the rank of 5

is finite, 5 is complete. By Theorem 2, 5 is a summand of M. Hence

M is free.

In investigating structure problems of torsion-free .R-modules, I

came across the following phenomenon. Let M be an indecomposable

torsion-free i?-module of rank 2 of the type exhibited by Kaplansky

in [2J. If we form the completion we find M*^R*; the rank de-

creases. Incidentally, this example shows that there is no connection

between taking the completion of a module and tensoring the module

by the completion of the ring, R*. Basic submodules explain this

lowering of rank.

Theorem 4. Let M be a torsion-free R-module of finite rank with

basic submodule B. Then rankit'M* = ranks B. Further, rankn* M*

= rankn M iff M is free.

Proof. Since B is dense in M, M*—B*. Since B is free of finite

rank, ß* = (S£)*=S£*, so that rank*.« M* = rankB B. If rankB« M*

= rank« M, then rankfl M = ra.nkn B. However, a pure submodule

B of M of the same rank must be M, i.e., B = M, and so M is free.

We now show the algebraic structure of a complete module.

Lemma 5. Let 5=SCa, Ca cyclic. Then B* is the submodule of IIC*

consisting of all elements x= {xa} whose coordinates are countably non-

zero, and, given any subset of the coordinates, almost all are divisible

by pn, for any integer ».

Proof. It is straightforward to check that the above submodule

is complete and contains B as a pure dense submodule.

Corollary. Let B=~SCa. B* is a summand of IIC*.

Proof. By Theorem 2, we need only show that B* is pure in IIC*.

But this is obvious, by Lemma 5.

Corollary. Si?* is contained in a proper summand of IÍR*.

The above corollary is false for abelian groups. Los has shown that

the weak direct sum of countably many copies of the integers is con-

tained in no proper summand of the strong (complete) direct sum

of the integers.

Lemma 6. Let M be a complete module with submodule S. M/S has

no elements of infinite height iff S is closed.

Proof. =>Let tc: M—*M/S be the natural homomorphism. Since
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M/S has no elements of infinite height, 0 is closed in the p-a.dic

topology in M/S, and so S = 7r~1(0) is closed in M.

<=Suppose p"b* = a*, for all «, where * denotes coset mod 5.

Then pnbn+sn = a, snCS. Hence pn+1bn+i+sn+i— (pnb„+sn) =0, and

so sn+i — snCpnM. Hence {sn} is Cauchy and so there is an x£M

such that 5„—»x, since M is complete. Since S is closed, x£S. Hence

Pnbn-\-sn — x = a — x. Taking the limit, the left side tends to 0. Hence

a = x, i.e., aCS. Therefore a* = 0.

Theorem 7. Let M be complete, S a closed submodule. Then M/S is

complete.

Proof. By the lemma, M/S is a metric space. Suppose {a*} is

Cauchy in M/S, i.e., a*+1 — a*=pk(n)b*, and k(n)—>°o. By induction

on «, we show that there are representatives an of a* such that

an+i — anCpkMM. Select ai arbitrarily so that ai—>a*. Suppose we

have chosen ai} i^n, such that ai — ai-iCpk(-i~1)M. Lifting a*+1

arbitrarily to an'+i, we obtain añ+i — an = pkMbn+sn, snCS. Define

an+i = a„'+i — sn. Then a„+i—*a*+1, and an+i — anCph{n)M. Since at each

step we are extending the given set of representatives, we have con-

structed a sequence {an} in M such that an-^a* and {an} is Cauchy

in M. Since M is complete, lim an — a. Since it: M-^M/S is continu-

ous, lim a* = a*. Hence M/S is complete.

As an application of Theorem 7, we now give a conceptually simple

proof of a theorem of Baer, Hilfssatz 4.1, [l]. The question under

consideration was: does the group of sequences of integers LT, have

the property that if G/T=U, then T is a direct summand, where T

is the torsion subgroup of G? In attacking this problem, Baer needed

the following crucial lemma. For fixed prime p, let C denote the sub-

group of II consisting of all elements almost all of whose coordinates

are divisible by pn, n any integer >0. If T is ^-primary with no ele-

ments of infinite height, and /: C—*T, then f(C) has bounded order.

We now prove this lemma.

Proof. Let G be an abelian group with no elements of infinite p-

height, p a fixed prime. We equip G with the p-adic topology and

form its completion G*. If G is the integers, G* is the ¿>-adic integers.

If G is free of countable rank, then G* consists of all sequences in a

strong direct sum of a countable family of copies of the £-adic

integers such that almost all of its terms are divisible by pn, n any

integer >0. Thus C = IIP\(2 integers)*. Note that both the com-

pletion and T are modules over the ¿>-adic integers.

We claim that/: C—>T can be extended to 2*, the completion of

the free group. If y£2*, then y= {y,}. If y has only one nonzero
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coordinate y<, we define/(y) as follows: suppose pkf(Xi) =0, where Xi

is a generator of the ith factor of II. Now y< = Sx,-, S a ¿>-adic integer.

Take integers rn such that rn—»5. For large «, 5 — rnC¡:(pk). Define

f(y) =f(rnXi). Now consider a general y. For each i, choose an integer

r,-such that/(y¿) =/(r¿x¿). Define/(y) =/({r,x¿}). It remains to prove

independence of choices. Suppose /(r,xt) =/(?■/x.) for all i. Claim

/({(ri — r'i )xí}) = 0. If y£C, h(y— X^î-i y¿)—>0° > where A is the height

function. Hence h(f(y)— X^f-i/^i))-^00- H /(3'<)=0 for all », then
h(f(y)) is infinite. Since T has no elements of infinite height,/(y) =0.

Thus the extension is well-defined. It is easy to check that / is a

¿>-adic integer homomorphism.

By Theorem 7, /(2*) is complete. But the only complete torsion

modules have bounded order. In particular,/(C) is of bounded order.

Lemma 8. Let M be a complete module with basic submodule B, and

let T be a module with no elements of infinite height. If f: B—>T, f is

extendable to M iff (f(B))*CT.

Proof. =>If / is extendable, f(M) is complete. Hence (f(B))*

C(f(M))*=f(M)CT.
<=Suppose (f(B))*(ZT. Let [xa] be an independent generating set

of B. If y£M, y= {r„x„}, ra£i?. Further, there is a sequence {«;}

of distinct indices such that ra = 0 if a^cxi for some i, and also almost

all the rai are divisible by pn for any positive integer «. Hence

f(raixai)-^0 in f(B). Thus { ¿Ci-i/(♦«<*«<)} is Cauchy in/(B). There-

fore there is a zE;(f(B))*QT such that ^"=if(raixai)=z. Define

f(y)=z.

Theorem 9. Let M be complete with basic submodule B, T a complete

module. Then any f: B—>T has a unique extension over M.

Proof. An extension exists, by the lemma. It is unique since any

homomorphism is continuous, and B is dense.

Corollary. Let M be complete with basic submodule B, T a complete

module. Then Horn (M, r)=Hom (B, T), the isomorphism being in-

duced by the inclusion map j: B—>M.

Given/: B-^T (notation the same as in Theorem 9), one may ask

whether the extension g: M—>T inherits any of the properties of/,

or vice versa.

Lemma 10. If B is basic in M, M and T complete withf: M-+T, then

f(B*) = (f(B))*.

Proof. (f(B))*C(f(M))*=f(M)=f(B*). On the other hand, if
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sCf(B*), then there is a bCB* such that f(b)=s, and there is a

sequence {ô„} in B such that &„—>&. Hence f(bn)-^>f(b)=s. Hence

sE(f(B))*.

Theorem 11. With the notation above, if f is an epimorphism, so is

g; if g is a monomorphism, so is f.

Proof. Trivial, using Lemma 10.

More interesting is the fact that both converses of Theorem 11 are

false.

Let B be free of countable rank, and let B' CB be such that B/B'

is the quotient field of R. Thus B' is basic in B. Let M = B*. Both

B and B' are basic submodules of M. Let /: B—*B be a monomor-

phism with imf = B', and let g: M^M extend/, g is an epimorphism,

since im g is complete and contains the dense submodule B'. How-

ever/ is not an epimorphism.

Let B be free on generators xt-, t = l, 2, • • • , and let M=B*.

Define /: B-+B by f(xi)—pxi; f(xk+i) = pxk+i — xk. / is a monomor-

phism, and it is easily checked by induction that f(pkxk)=pk+1Xk

— £i-i/(£***)• Now y= {^ij^OGtf. Further 2£ix<-»;y, and so

f(2pixi)-^g(y). But2*/(£{x¿) =f(pkxk)+Ilk-f(pixi) = pk+lxk->0. Hence

g(y) — 0, and g is not a monomorphism.
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