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Introduction. In 1954 C. E. Capel proved [l] the following theo-

rems: Let S be the inverse limit of a sequence of arcs (simple closed

curves) where the bounding maps are onto and monotone. Then S is an

arc (simple closed curve). It may be noted that if / is a monotone map

of an arc (simple closed curve) onto itself, then / is the uniform limit

of a sequence of onto homeomorphisms.2 We call such a map a near-

homeomorphism. In this paper we prove the following two theorems:

(1) If S is the inverse limit of a sequence of copies of a given compact

metric space X and the bonding maps are near-homeomorphisms, then

S is homeomorphic to X. (2) Let f: -X-—>F, g: Y^>X, where f, g are

maps and X, Y are compact metric spaces. Suppose fg and gf are near-

homeomorphisms. Then X is homeomorphic to Y. The second theorem

follows directly from the first. In order to establish the first theorem

we develop an approximation theorem which has interest in its own

right.
Definitions and Notation. Let X, be a sequence of compact

metric spaces, and for i è 2 let/,-map X¡ into Z,_i. Then the subspace3

S= {zE LTr Xi\fij(z,) =Zi} of U¿° X*1S the limit space of the inverse

system (Xi, /,•); in notation 5 = Lim(X¿, /,-).

Let/ map X into Y where X, Y are compact metric spaces. Then

for e>0:L(e, /) =Sup{o<¿(X)|x, yEX and |x — y\ <h implies

1/0*0-/(301 <«}■" Since X is compact, 0<L(e, f)^d(X).
Let (Xi, fi) be an inverse system. A sequence (a¡) of positive real

numbers is a Lebesgue sequence for (Xi, /¿) if there is a sequence (£>»)

of positive real numbers such that: (1) ^6¿< °°. (2) Whenever x, y

EX,-, i<j, and |x — y\ <a¡, then \fa(x) — fa(y)\ <b,: A sequence (c,)

of positive real numbers is a measure for (X{, /¿) if: (1) 2~Zn+i c»

<(l/2)c„, w—1, 2, • • • , (2) for any two points s, s' of Lim (X{, /,-)

there is an integer « such that |s„+i —sn+i| >cn.
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1 This paper was written while the author was an Office of Naval Research Fellow

at the University of Michigan.

2 A simple proof for the case of an arc is the following: Suppose/: [Ol]—>[0l]

is monotone. Obviously we may assume that/(0) =0, and /(l) = 1. Let fin-. [01 ]—>[01 ]

by K(x) = (1 - l/n)f(x) + (l/n)x.
3/«=/>+i/i+2 • ' - fhfa — 1- If z is a point of Xi then z¡ will always denote the ¿th

coordinate of z. Hence z = (z<).

4 d(X) denotes the diameter of X. \x—y\ denotes the distance from x to y.
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Lemma 1. Let S = Lim(X;, /;) where the Xt are compact metric. Then

(Xi,fi) has a Lebesgue sequence (a,).

Proof. Let ay=Min«y£(2~', /,,), &, = 2-<. Then £¿>¿<c°, and

whenever x, yCXj, i<j, and |x — y\ <a¡, then |x — y\ <L(2"', fiS).

Hence |/„(x) -fti(y) | <2~>.

Lemma 2. Let S = Eim(Xi, fi) where the Xi are compact metric. Then

(Xi,fi) has a measure (c¡).

Proof. Let (a¿) be the Lebesgue sequence constructed in the proof

of Lemma 1. Let Ci=(l/2)a2, ci+i=(l/2) Min[(l/2)ct-, al+2]. Then

(ci) is the required measure. For suppose s, s' are distinct points of S.

Then there exist positive integers », j with n<j, and such that

| sn — sn' | > 2~'. If \sj — $/| ^c3_i then \tj—1}\ <a¡. Hence \tn—s„ \

<2~> which is absurd. Hence | Sj — s¡ | >c¡-i.

Theorem 1. Let 5 = Lim(X,-, f,), r = Lim(X<, g<) where the Xt are

compact metric spaces. Suppose ||/i+i — g;+i|| <a¡, i — \, 2, ■ ■ ■ , where

(a<) is a Lebesgue sequence for (Xi, gt). Then the function Fx : S-+XN

defined by Fn = Lim„ gjvn/n „ is well defined and continuous.6 Moreover,

the function F: S—^T defined by F(s) = (Fi(s), F2(s), ■ • ■ ,) is well de-

fined, continuous, and onto.

Proof. Let N be fixed. Let (¿>t) be the sequence associated with

(ai).

(1-1) Lim \\gNifij - gNigiiW = 0.
i-K»-J{<i<J

Proof of  (1.1). \\gNifij-gNiga\\ = £?lî WgNigifn-gNigi r+i/r+i y||.

NOW gNigirfrj = gNrfr+lfr+l j, and gNigi r+l/r+1 j = gNrgr+lfr+1 j- Since

||giVr/r+l/r+l ;   —   gNrgr+lfr+1 j\\    Ik   \\gNrfr+l   ~  gNrgr+l\\,    \\gNifij   ~   gNigij\\

= £i-< lllATr/r+i —girrgr+i||. But the hypothesis assures that l|/r+i —gr+i||

<aT. Hence ||givr/r+i-givrgr+i|] <br. Hence \\gNifa — gNigi,\\ è £i-í ¿»r

= £"-i ot. Finally Limi<co \\gNifij-gNign\\ áLim<<00 £"=1¿>r = 0.

(1-2) Lim    [|g2v»/¿oo — gNjfiJ\ = 0.

The proof of (1.2) precisely parallels that of (1.1).

(1.3) Lim gNifi«,(s) = Fn(s) uniformly in s.

(1.3) follows immediately from (1.2).

(1.4)  Hence Fn — Lim^«, gNifi » is well defined and continuous.

6 /„ „ is the map projecting each point of 5 onto its nth coordinate.
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From this it follows immediately that F: S—*II<" i Xt is well defined

and continuous.

(1.5) F(S) ET. To prove (1.5) it suffices to show that

gijFj(s) = Fi(s) for all s G S, i < j.

gijFi(s) =gij Lim gjnfn x(s)
n—>oo

=   Lim gijgjrtfn oo(s)
n—>«5

= Lim ginfn n(s)
n—»»

= Fi(s).

(1.6) F: S—>L is onto.

Proof of (1.6). Let t = (tn)ET. Let N be fixed. We first show that

there is an s^G-5 such that FN(sN)=tN. Let e>0. By (1.1), (1.3), and

the convergence of 2~Zí= i b%, there is an i>N such that ||Fít — gNifi J\

<e/3, ||gjvt/iy — gw«gtj|| <e/3 all j>t; and bi<e/3. Fix this i. Now by

Corollary 3.8, Chapter VIII of [2] n;=ifij(Xj)=fi „(5). Since the X,-
are compact there is a j>i such that each point oifa(Xj) is of distance

less than a,- from a point of/» oo('S')- Hence there is a point sG-S such

that \fa(ti)-fi x(s)\ <ai. Hence |gw</«(ty) — fW<«>(5)| <h<«/3.
Then

| Fjv(í) -í¡f |    g   | Fjf(s) - gmfim(s) |    +   | gNifi oo(s) - gNifii(tj) I

+   I gNifij(tj)   — gNigij(ti) I

g e/3 + e/3 + e/3 = e.

Hence the compactness of 5 insures the existence of an sNES such

that FN(sN)=tN. Now for all N, FN(sN)=t?f implies that Fi(sN)=ti

for i<N. lï s ES is a convergence point of the set {sN} then F(s) =t.

Remark. F is not necessarily 1-1. For suppose L=Lim(L, g¿)

where/,-is the unit interval [01], andg¿(/) =0, ¿GL- Let S = Lim(L¡,/¿)

where /,-(i) = /, ¿G-L. Let a< = 2 for all i. Then (<!<) is a Lebesgue se-

quence for (Ii, gi) where &¿ = 2_i. For if x, yEIj then \gn(x)—gn(y)\

= 0<2~'. Also \fi i+i(t) — gi i+i(t)\ is t, and í<a¿. Since 5 is an arc

and T is a point, F cannot be 1-1.

Theorem 2. Let S = Lim(Xi, f¡), L = Lim(X¿, g¿) where the Xi are

compact metric spaces. Suppose

||/¿ - gi|| < min c¿_i;  min  L(c,-_i, g*,-_i)
*<i-i J
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where (c¡) is a measure for (Xit /,•). Then the map F: S—>T described in

Theorem 1 is a homeomorphism onto.

Proof. To prove that F is well defined continuous and onto, it

suffices to show that at = mink<i L(cit gki) is a Lebesgue sequence for

(Xi, gi). The sequence we associate with (at) is (c,). Since cn

>2£^+iC¿, £i°c,<oo. Finally, suppose x, yCX¡, i<j, and

\x — y\ <a,-. Then |x —y| <L(c¡, gi3). Hence |g<y(x) — g<y(y)| <c¡.

00

(2.1) \\fm - gm\\ < £ ch all N, i, (N < i).
j=N

Proof of (2.1).

\\gNi  — fNi\\   â  \\gffi-lgi — gífi-lfi\\   + ||giV¿-l/» —/v¿-l/»||,

Sä  ||giV¿-lg¿ — gtfi-lfi\\   + ||gi«-l —/iV!-l||.

Since   \\gi— /¿|| <a¿_i,   ||gjv¿_ig¿ — g]v;-i/¿|| <c.-i.   Henee

||giVJ—/jV»||   < C,-_i + ||gjv i-l — /v <_i||.

Continuing recursively, ||gjvt— /ív¿¡| <c¿-i + • • • +Cjv.

(2.2) Fis 1 - 1.

Proof of (2.2). Suppose F(s) = F(s'), s, s'CS. If s^s', then for

some n> 1, c„_i< js„—s¿ \. Now for i>n,

Cn—1 ̂ .    \  Sn ^n   | | Jni\Si)        Jni\Si ) |

á    \fni(Si)   —  gni(Si) |    +   | gni(Si)   ~  gni(s¡) |    +   | gni(sí)   ~ fni(s'i) \.

Applying (2.1) we get:

00

(2.3) c„_i < 2 £ a + | gni(si) — g„i(s¡) | , all i > ».

Letting i approach infinity, lf»<(s<) — gn»(s/)| —>\ Fn(s) — Fn(s')\ =0.

Hence (2.3) becomes c„_i ^ 2 £j"-n ci- But this contradicts the require-

ment that c„_i> 2 £"=B Cj.

Theorem 3. Let 5 = Lim(Xt-, /¿) w/zere //ie Xi are compact metric

spaces. For i^2 let K¡ be a nonempty collection of maps from Xi into

Xi-i. Suppose that for each i^2 and e>0 there is gCKf such that

\\fi — g\\ <e. Then there is a sequence (gi) where giCKt and S is homeo-

morphic to Lim(X¿, g<).

Proof. Let (c,) be a measure for (Xi, /,•). Let g2 be any element of

K2. Let g¡ be an element of K3 such that \\ft~go\\ <L(c2, g2). Induc-

tively,   let  gn+i   be   an   element   of   Kn+i  such   that   ||/n+i_gn+i||
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<minfc<„ L(cn, gkn). (Here g*„ = gfc+ig*+2 ■ ■ • gn). Then by Theorem 2

if T=him(Xi, gi), F: S—*T homeomorphically onto.

Near homeomorphisms. Let X be a metric space. A map /: X—rX

is a near homeomorphism if for any e>0 there is a homeomorphism

Ht of X onto itself such that ||iL-/|| <e.

Theorem 4. Le/ 5 = Lim (Xi, f¡) where the X{ are all homeomorphic

to a compact metric space X, and for all i, fi is a near homeomorphism.

Then S is homeomorphic to X.

Proof. By Theorem 3 there is a sequence hi of homeomorphisms of

Xi onto Xi-i such that 5 = Lim(X¿, A,-). But now S must be homeo-

morphic to X.

Corollary. Let S = Lim (Xi, fi) where each Xi is a copy of a fixed

2-manifold X (compact and with or without boundary) and fi is mono-

tone onto. Then S is homeomorphic to X.

Proof. J. W. T. Youngs [4] has proven that if/: X—>X is monotone

onto and X is a compact 2 manifold (with or without boundary)

then / is a near homeomorphism.

Theorem 5. Let X, Y be compact metric spaces. Suppose f maps X

into Y, g maps Y into X, andfg and gf are near homeomorphisms. Then

X is homeomorphic to Y.

Proof. The following diagram commutes:

gf      „      gf      „      gf
X*-

1

x<-

g     f

1

X<r-

1

X
g     f

X¿- Y¿-

X

X

Si

•St

Y   <r
fg

F<-
fg

Y <-

Hence Si, S2, and S3 are mutually homeomorphic. But by Theorem 4

Si is homeomorphic to X and S3 is homeomorphic to Y.

Corollary. Let X, Y be compact metric spaces. Suppose f maps X

onto Y, g maps Y into X, gf is a near homeomorphism. Then Dim(X)

gDim(F).

Proof. Examination of the diagram for Theorem 5 yields that X

can be expressed as the inverse limit of F's. Hence Dim (AT) ̂  Dim( Y).
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NEW METHOD FOR EXPANSION AND CONTRACTION
MAPS IN UNIFORM SPACES

THOMAS A. BROWN1 AND W. W. COMFORT2

1. Introduction and definitions. In [2], Freudenthal and Hurewicz

showed that if the function /, from the totally bounded metric space

M onto M, has the property that (fx, fy) ^ (x, y) for each x and y in

M, then / is an isometry. By amplifying the sequential argument

given in [2], Rhodes (see [4]) proved that an even stronger result

holds in the more general setting of uniform spaces. Using a different

method, the present paper offers a theorem similar to that of Rhodes,

together with a number of results concerning "expansion" maps in

uniform spaces. The notation used here, which very closely approxi-

mates that of [4], has been taken from Chapter 6 of [3].

1.1. Definition. If (M, 11) is a uniform space, then a subset 03

of 11 will be called a basis for (M, 11) if

(a) if xCM and UC®, then (x, x)CU;

(b) if ¿7£1L, then £7_1 contains a member of (B;

(c) for each Z7£ll there is a F£(B for which Vo VCU; and

(d) for each Z7G11 and F£1l, there is a WC® for which WC UC\ V.
1.2. Definition. If (B is a basis for the uniform space (M, U),

then (B is said to be open if each of its elements is open in MXM.

1.3. Definition. If (B is a basis for the uniform space (M, 11),

then ffi is said to be ample if, whenever (x, y)CUC($>, there is a

WC& for which (x, y)CWCWCU.
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