A THEOREM ON PERMUTATIONS IN A FINITE FIELD
L. CARLITZ

Let F, denote the finite field of order ¢, where ¢=75" is odd. Put
Y¥(a)=+1, —1 or 0 according as a is a nonzero square, a non-square
or 0 in F,. Then we have

(M ¥(a) = am,

where ¢=2m-+1. A polynomial f(x) with coefficients in F, is called a
permutation polynomial if the numbers f(a), a € F,, are distinct. For
references see [1, Chapter 18; 2, Chapter 5].

The following theorem answers a question raised by W. A. Pierce
in a letter to the writer.

THEOREM. Let f(x) be a permutation polynomial such that

(2) f0) =0, f1)=1
and

Q) ¥(f(a) — f(9)) = ¥(a —b)
for all a, b& F,. Then we have

@ f@) = =’

for some j in the range 0 <j<n.

Proor. For fixed cEF, put
(5) y = fle + ) — f(e).

It follows from the hypothesis that when x runs through the non-
zero squares of F, the same is true of y; a like result holds for the
nonsquares. Thus, if # is an indeterminate, we have

II {su—sc+o} = II {u—10 -y}

¥ (z)=1 ¥ (y)=1
Now it is familiar that

II w—2 =w —1.

¥ (2)=1

Consequently
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(6) II {4—fc+ o)} =@—fe)m—1.

¥ (z)=1

Similarly we have

(M “1;1 l{u—f(0+x)} = (u — flo)"+ 1.
Combining (6) and (7) we get

L =S =1
® I e s ol = o+ 1

the product in the left member extending over all x in F,. From (8)
we get

V@ ml = fQ) m = f)
Sou—fetn) @—fOr—1 @—f@)r+1

_ = e
(= f(0)™—1
_ s
wmtl — g
so that
zEEh ¥( ) f( T ) = — (v — fle)™

Since #t—u=[u—f(x+c)]1— [u—f(x+c)], the left member becomes
2 ¥@{@—fe+ o) — 1} = X ¥@)(u — flc + x))*

= ZF: Y(x — o)(u — f(x))™
and therefore
9) 2 V(@ — o) (u — f(@)™ = — (u — f(e)™

z2EFq

Expanding each side of (9) we evidently obtain

(10) 2 (@ —omfra) =0 A <r<m),
(1) Commr X2 (= )"+ (2) = (—D)™Cnsf'(c) (0= 7 < m).

Since, by (3), f*(x) =xm, (11) may be written as
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(12)  Comm—r 2, (& — Omamfr(a) = (=)™ Cpn.fr(c) (0 =7 = m).

zEFq
Put
2m—1 .
(13) frl@) = X2 b:(‘r)x’ 1 =7 < 2m);
=1

where the right member denotes the reduced form of f7(x), that is,
the residue of f7(x) (mod x?—x); by a known property of permutation
polynomials {2, p. 59] the degree is indeed less than 2m. We now sub-
stitute from (13) in (10) and (12) and recall that [2, p. 54] for all s=1

Zx'={_1 (q—1|s),

z€Fq 0 (otherwise).
It follows from (10) that

(14) Cosbrgs =0 (1 S7r<m;0<s=m),

and from (12) that

(15) (=1 Commerb = (=1)"Crb’ (O Sr<m;0<s< 2m).

If ¢ is a prime, the binomial coefficients Cn,, are all prime to ¢ and
(14) implies deg fr(x) <m for 1 <r <m. But if deg f(x) =k>1, there
is a least positive integer r <m such that deg f"(x) =rk=m. Hence
deg f(x) =1, so that by (2) f(x) =x and the theorem is proved for this
case.

The general case is more troublesome. Let M denote the set of
integers of the form

Gt ap+ -+ aipm? O=a=0p-1/2),
where ¢=p". It is familiar that the binomial coefficient Cy,; is prime
to p if and only if & M (for proof see [5, p. 52]). If rEM, r <m, it is
evident from (15) that deg fr(x) <m; if also s€ M then (15) implies
b" =0. Therefore, when r& M, r <m, the only nonzero terms in the

right member of (13) are those for which j&E M.
Since

(16) f@)f~(x) = fr(x) = 2™,

and since f(x) and f»!(x)—in reduced form—are of degree <m, it
follows from (16) that f(x) =x* for some k& M, k<m. Put

E=ko+ Ep+ -+ Epapr? 0=k < (p—1)/2).
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Then, in the first place, if the largest k; =2, take the least 7 such that
rk;> p/2; this implies kr & M, but r&E M so that we have a contradic-
tion. In the second place, if all k; =1, but k><p7, then

k=p+ .-+ pt 0=s<t<mn).
It follows that the residue (mod ¢—1) of
I+ (= Dp/2)k
is not in M, while
1+ (- Dp/2€ M.
Hence if
(17 1+ (- Dp~/2<m,

we again have a contradiction. It is easily verified that (17) holds
except for ¢g=3 or 9. The case ¢=3 has already been disposed of.
As for ¢=9, it is clear that k=4 cannot occur. Consequently k=2p7
and the theorem is proved.

The referee has kindly called the writer’s attention to papers by
Jirnefelt [4] and Kustaanheimo [5] which are related to the subject
matter of the present note.

The writer is indebted to Professor Pierce for many helpful com-
ments.
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