
A THEOREM ON PERMUTATIONS IN A FINITE FIELD

L. CARLITZ

Let Fq denote the finite field of order q, where q = pn is odd. Put

ip(a) = +1, —1 or 0 according as a is a nonzero square, a non-square

or 0 in Fa. Then we have

(1) ¿(a) = or,

where q = 2m + l. A polynomial/(x) with coefficients in Fq is called a

permutation polynomial if the numbers/(a), aEF q, are distinct. For

references see [l, Chapter 18; 2, Chapter 5].

The following theorem answers a question raised by W. A. Pierce

in a letter to the writer.

Theorem. Let f(x) be a permutation polynomial such that

(2) /(0) = 0,       /(l) = 1

and

(3) *(/(«) - f(b)) = fa* - b)

for all a, bEFq. Then we have

(4) f(x) = xpi

for some j in the range 0^j<n.

Proof. For fixed cEFq put

(5) y=f(c + x)-f(c).

It follows from the hypothesis that when x runs through the non-

zero squares of Fq the same is true of y; a like result holds for the

nonsquares. Thus, if u is an indeterminate, we have

II   {u-f(c + x)\ =    II   U-f(c)-y).

Now it is familiar that

U   (u — x) = um — 1.

Consequently
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(6) II   \u-f(c + x)} =(u- f(c)r - 1.

Similarly we have

(7) TJ    {u - f(c + x)} = (u - f(c)r + L
#(•>—i

Combining (6) and (7) we get

T-r   < > (« - /(c))"1 -   1
(8) II {u-f(c + x)}*m =1-¿ÜÍ-,

Aix "      (u-f(c)r + i

the product in the left member extending over all x in Fq. From (8)

we get

_ \p(x) m(u - f(c))m~l        m(u - /(c))m_1

*eFg u-f(c + x)      (u - /(c))» - 1      (u - /(c))™ + 1

(u - /(c))"-1

(u-f(c))2m- 1

(u - /(c))-

so that

£ m —7r—- - - (* - /w)".
*eF4 « — /(c + X)

Since uq — u= [u— f(x+c)]"— [u—f(x+c)], the left member becomes

£ Hx) {(« - /(c + x))2m - 1} =   £ t(x)(u - f(c + x))2m
x£Fq xeFq

=   £ t(x - c)(u - f(x))2™

and therefore

(9) £ t(x - c)(u- f(x))im = - (u - f(c))m.

Expanding each side of (9) we evidently obtain

(10) £ (x - c)mf(x) = 0 (i úr <m),
X<=Fq

(11) C2m,m_r £ (x - c)™fm+r(x) = (-l)m+1Cm,rf(c)      (0 g r ^ m).
x£Fq

Since, by (3), fm(x)=xm, (11) may be written as
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(12) C2m.m_r E (* - c)mxmf(x) = (-l)m+1Cm,r/'(c)      (O^rú m).
XfèFq

Put

2m-l .

(13) /'(x) =   2 Oi x (Ur<2m);
3-1

where the right member denotes the reduced form of fr(x), that is,

the residue of/r(x) (mod xq — x) ; by a known property of permutation

polynomials [2, p. 59] the degree is indeed less than 2m. We now sub-

stitute from (13) in (10) and (12) and recall that [2, p. 54] for all s^ 1

xeFq \

It follows from (10) that

-1        (?-l|*),

0        (otherwise).

(14) Cm,sb^ = 0 (lif<»;0SsSm),

and from (12) that

(15) (-l)SC2m,m_ri,(r) = (-lfCm,A(r)      (0 g r g m; 0 g s g 2m).

If 2 is a prime, the binomial coefficients Cm,s are ail prime to q and

(14) implies deg fr(x) <m for l^r<»î. But if deg/(x)=4>l, there

is a least positive integer r<m such that deg fr(x) =rk^m. Hence

deg/(x) = 1, so that by (2) /(x) =x and the theorem is proved for this

case.

The general case is more troublesome. Let M denote the set of

integers of the form

ao + aip +-h an-i/»"-1 (0 ^ «i Ú (p - l)/2),

where <z = £n. It is familiar that the binomial coefficient Cm,tis prime

to p if and only if tEM (for proof see [5, p. 52]). If rEM, r<m, it is

evident from (15) that deg/r(x) <m; il also s($M then (15) implies

&,r) = 0. Therefore, when rEM, r<m, the only nonzero terms in the

right member of (13) are those for which JEM.

Since

(16) /W/m_1(«) = fm(x) = xm,

and since/(x) and/m_1(x)—in reduced form—are of degree <m, it

follows from (16) thatf(x)=xk for some kEM, k<m. Put

4 = 4o + kip + ■ ■ ■ + 4„_r/>"-1 (0 g 4/ < (p - l)/2).
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Then, in the first place, if the largest ¿<^2, take the least r such that

rki>p/2; this implies krCM, but rCM so that we have a contradic-

tion. In the second place, if all ¿,-^ 1, but k¿¿p', then

k = ps + • • ■ + pl (0 ^ í < K »).

It follows that the residue (mod q—i) of

(1 + (p - l)p"-'/2)k

is not in M, while

i + (p- l)p"-'/2 C M.

Hence if

(17) 1 + (p - l)pn~'/2 < m,

we again have a contradiction. It is easily verified that (17) holds

except for q = 3 or 9. The case q = 3 has already been disposed of.

As for g = 9, it is clear that ¿=4 cannot occur. Consequently k = p>

and the theorem is proved.

The referee has kindly called the writer's attention to papers by

Järnefelt [4] and Kustaanheimo [5] which are related to the subject

matter of the present note.

The writer is indebted to Professor Pierce for many helpful com-

ments.
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