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It is of course well known that1—14+1—1 - - . is Abel-summable
to 1/2, that is to say

1
1_t+t2_t3+...—->? ast—1-.

It can also be shown that

1
1—t+t4—---it”~--—>? ast— 1~
If we consider, however, the rate at which these two functions
approach their limit (1/2) then we find that these are worlds apart!
In fact
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whereas an application of the functional equation for the f-function
gives
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In this note we show that this anomalous behavior persists for the
other functions

(W) W) = 3 (D, k=12,

n=0

that namely fi(¢) approaches 1/2 very slowly for k odd and very
quickly for k even.

THEOREM. If fi(t) are defined by (1) then
A. for any fixed odd k there is a ¢ >0 such that lfk(t) - 1/2| >c(1-1),
B. for any fixed even k there is a ¢>0 suchvthat

| fult) = 1/2] < A exp (—c/(1 = %), a=1/(k— 1).

ProoF. Our principal tool will be the Mellin inversion formula
which gives
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1 2440
—_— T(s)x—*ds = 7%, x> 0.
21t oieo
From this we obtain, by a term by term integration,

24400 © (_ l)n—l 0
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=1 —fk(e"‘).

Now note that

S (1) & o = - 2ot

el nk: ks - nlu

and obtain
1 2410
@ o= Tee — 2l = 1= 5.
27 2—ic0
We now shift the contour from the vertical line Re s=2 to the line
Re s=—1/k. (It is assumed that £>1.) The estimates
| T@s)| < dee, | elhs)| < | 1]4, t=1Ims, 4,¢> 0,

are known to be valid in —1/k<Res=2, [tl >1 and so the Residue
theorem is applicable.
However, in —1/k<Re s=<2, the only pole is seen to be at s=0
with residue (1—2){(0)=1/2 and so we obtain
1 —1/k+4o0 1
©)) — T(s)a~*(1 — 2'*)¢(ks)ds = - — fi(e™).

278 J _1 ki

Let us now utilize the functional equation of the {-function, namely
1 .o
) £(s) = — (27)* sin 5 sT(1 — s)¢(1 — s).
™
If we introduce this into (3) and then call 1 —ks=2 the result is

1 e 1—3 x
-— 7T ——-) I'(2) cos — zx=~D/k(1 — 2-%)¢(z)d3
ki 2—50 k 2

(5) .
=5 file™).
Proor oF A. Here & is odd. If we shift the contour from 2 to 2k

then the residue theorem is again applicable and it gives one residue
at z=k+1, namely cx where
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c =

(1 — 2-®+D)e(k 4+ 1)(—1)&-D12,

k1

The remaining contour integral is the same as that in (5) with the
limits changed to 2k —i4w, 2k+14x. This clearly has magnitude

2k+i0 1 —2
g w5 o () ] = e

2k—100 k

and so finally, by (5)
1
Py — fiu(e®) = cx + O(x?"1/%), E>1,

which yields A immediately.

ProoF oF B. Here % is even and so the integrand in (5) is analytic
for all 2, Re 2>0. We may then shift the contour to the right to the
line Re 2=kM 41 (M =half an odd integer) and no residues will be
introduced.

We now estimate the resulting integral. We have

| a—ex (D Ik(] — 2—:);(z)| < xM,

T'(3) cos%z =< (kM)
P ) omma
= — — ) = mz
2 Z y ’
B p—_—
i 2 k ( 1)
M-\
2
™ 1/2 1
— . 1
cosh1 (M - —)!
k 2
and so the resulting integral is in magnitude
(RM)!
Seg———————— M £ MG DMEM

(u-2)

If M is now chosen close to x~%/e, a=1/k—1 then the resulting
estimate becomes
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< Aeel=*

and B follows immediately. This completes the proof.

These results seem to point to the fact that of all the series
> (—1)"/™ the one which goes “fastest” to 1/2 is . (—1)%n". I
wish to thank J. Korevaar for pointing out that this is actually the
case, in the following sense:

We have seen that | >_(—1)""—1/2| Se~9/@=9, On the other hand,
it is impossible that

E (_l)ntf(n) —_ _;_. =< e~ () /(1)

where ¢(¢) =0 is unbounded as t—1. It is, in fact, a theorem of Kore-
vaar [3], that if

| 3= dae™| = w(w), u>0,
and
Az — 1, lim%{lfulogw(u)= — o,
%—0

then Y A,e~"=constant.
Changing # into log (1/t) immediately yields the result stated
above.
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