$$
1-1+1-1+\cdots=\frac{1}{2}
$$

DONALD J. NEWMAN

It is of course well known that $1-1+1-1 \cdots$ is Abel-summable to $1 / 2$, that is to say

$$
1-t+t^{2}-t^{3}+\cdots \rightarrow \frac{1}{2} \quad \text { as } t \rightarrow 1^{-}
$$

It can also be shown that

$$
1-t+t^{4}-\cdots \pm t^{n} \cdots \rightarrow \frac{1}{2} \quad \text { as } t \rightarrow 1^{-}
$$

If we consider, however, the rate at which these two functions approach their limit (1/2) then we find that these are worlds apart! In fact

$$
\left(1-t+t^{2} \cdots\right)-\frac{1}{2}=\frac{1}{1+t}-\frac{1}{2}=\frac{1-t}{2(1+t)} \sim \frac{1-t}{4}
$$

whereas an application of the functional equation for the θ-function gives

$$
\left(1-t+t^{4}-\cdots\right)-\frac{1}{2} \sim\left(\frac{\pi e^{-\pi}}{1-t}\right)^{1 / 2} \exp \left(-\frac{\pi^{2}}{4} \cdot \frac{1}{1-t}\right)
$$

In this note we show that this anomalous behavior persists for the other functions

$$
\begin{equation*}
f_{k}(t)=\sum_{n=0}^{\infty}(-1)^{n} t^{n k}, \quad k=1,2, \cdots \tag{1}
\end{equation*}
$$

that namely $f_{k}(t)$ approaches $1 / 2$ very slowly for k odd and very quickly for k even.

Theorem. If $f_{k}(t)$ are defined by (1) then
A. for any fixed odd k there is $a c>0$ such that $\left|f_{k}(t)-1 / 2\right|>c(1-t)$,
B. for any fixed even k there is a $c>0$ such that

$$
\left|f_{k}(t)-1 / 2\right|<A \exp \left(-c /(1-t)^{\alpha}\right), \quad \alpha=1 /(k-1)
$$

Proof. Our principal tool will be the Mellin inversion formula which gives

[^0]\[

$$
\begin{array}{cc}
1-1+1-1+\cdots=\frac{1}{3} \\
\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \Gamma(s) x^{-s} d s=e^{-x}, & x>0 .
\end{array}
$$
\]

From this we obtain, by a term by term integration,

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \Gamma(s) x^{-s} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{k s}} & =\sum_{n=1}^{\infty}(-1)^{n-1} e^{-n k x} \\
& =1-f_{k}\left(e^{-x}\right)
\end{aligned}
$$

Now note that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{k s}}=\left(1-\frac{2}{2^{k s}}\right) \sum_{n=1}^{\infty} \frac{1}{n^{k s}}=\left(1-2^{1-k s}\right) \zeta(k s)
$$

and obtain

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \Gamma(s) x^{-s}\left(1-2^{1-k s}\right) \zeta(k s) d s=1-f_{k}\left(e^{-x}\right) \tag{2}
\end{equation*}
$$

We now shift the contour from the vertical line $\operatorname{Re} s=2$ to the line $\operatorname{Re} s=-1 / k$. (It is assumed that $k>1$.) The estimates

$$
|\Gamma(s)|<A e^{-c|t|}, \quad|\zeta(k s)|<|t| A, \quad t=\operatorname{Im} s, A, c>0
$$

are known to be valid in $-1 / k \leqq \operatorname{Re} s \leqq 2,|t|>1$ and so the Residue theorem is applicable.

However, in $-1 / k \leqq \operatorname{Re} s \leqq 2$, the only pole is seen to be at $s=0$ with residue $(1-2) \zeta(0)=1 / 2$ and so we obtain

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{-1 / k-i \infty}^{-1 / k+i \infty} \Gamma(s) x^{-s}\left(1-2^{1-k s}\right) \zeta(k s) d s=\frac{1}{2}-f_{k}\left(e^{-x}\right) \tag{3}
\end{equation*}
$$

Let us now utilize the functional equation of the ζ-function, namely

$$
\begin{equation*}
\zeta(s)=\frac{1}{\pi}(2 \pi) \cdot \sin \frac{\pi}{2} s \Gamma(1-s) \zeta(1-s) \tag{4}
\end{equation*}
$$

If we introduce this into (3) and then call $1-k s=z$ the result is
$-\frac{1}{k \pi i} \int_{2-i \infty}^{2+i \infty} \pi^{-z} \Gamma\left(\frac{1-z}{k}\right) \Gamma(z) \cos \frac{\pi}{2} z x^{(z-1) / k}\left(1-2^{-z}\right) \zeta(z) d z$

$$
\begin{equation*}
=\frac{1}{2}-f_{k}\left(e^{-x}\right) \tag{5}
\end{equation*}
$$

Proof of A. Here k is odd. If we shift the contour from 2 to $2 k$ then the residue theorem is again applicable and it gives one residue at $z=k+1$, namely $c x$ where

$$
c=\frac{2(k)!}{\pi^{k+1}}\left(1-2^{-(k+1)}\right) \zeta(k+1)(-1)^{(k-1) / 2}
$$

The remaining contour integral is the same as that in (5) with the limits changed to $2 k-i \infty, 2 k+i \infty$. This clearly has magnitude

$$
\leqq x^{(2 k-1) / k} \int_{2 k-i \infty}^{2 k+i \infty} M \cdot\left|\Gamma\left(\frac{1-z}{k}\right)\right||d z|=c x^{(2 k-1) / k}
$$

and so finally, by (5)

$$
\frac{1}{2}-f_{k}\left(e^{-x}\right)=c x+O\left(x^{2-1 / k}\right), \quad k>1
$$

which yields A immediately.
Proof of B. Here k is even and so the integrand in (5) is analytic for all $z, \operatorname{Re} z>0$. We may then shift the contour to the right to the line $\operatorname{Re} z=k M+1$ ($M=$ half an odd integer) and no residues will be introduced.

We now estimate the resulting integral. We have

$$
\begin{aligned}
& \left|\pi^{-z} x^{(z-1) / k}\left(1-2^{-z}\right) \zeta(z)\right|<x^{M} \\
& \\
& \left\lvert\, \begin{aligned}
&\left|\Gamma(z) \cos \frac{\pi}{2} z\right| \leqq(k M)! \\
&\left|\Gamma\left(\frac{1-z}{k}\right)\right|=\left|\Gamma\left(-M+\frac{i y}{k}\right)\right|, \quad(y=\operatorname{Im} z) \\
& \leqq\left|\frac{\pi}{i}\left(+\frac{1}{2}-\frac{i y}{k}\right)\right| \cdot \frac{1}{\left(M-\frac{1}{2}\right)!} \\
&=\left(\frac{\pi}{\cosh \frac{y}{k}}\right)^{1 / 2} \cdot \frac{1}{\left(M-\frac{1}{2}\right)!}
\end{aligned}\right., \quad .
\end{aligned}
$$

and so the resulting integral is in magnitude

$$
\leqq c_{1} \frac{(k M)!}{\left(M-\frac{1}{2}\right)!} x^{M} \leqq c_{2} M^{(k-1) M} x^{M}
$$

If M is now chosen close to $x^{-\alpha} / e, \alpha=1 / k-1$ then the resulting estimate becomes

$$
<A e^{-c / x^{\alpha}}
$$

and B follows immediately. This completes the proof.
These results seem to point to the fact that of all the series $\sum(-1)^{n t t^{\prime}(n)}$ the one which goes "fastest" to $1 / 2$ is $\sum(-1)^{n t n^{2}}$. I wish to thank J. Korevaar for pointing out that this is actually the case, in the following sense:

We have seen that $\left|\sum(-1)^{n} t^{n^{2}}-1 / 2\right| \leqq e^{-c /(1-t)}$. On the other hand, it is impossible that

$$
\left|\sum(-1)^{n} t^{\prime(n)}-\frac{1}{2}\right| \leqq e^{-\phi(t) /(1-t)}
$$

where $\phi(t) \geqq 0$ is unbounded as $t \rightarrow 1$. It is, in fact, a theorem of Korevaar [3], that if

$$
\left|\sum A_{n} e^{-n u}\right| \leqq w(u), \quad u>0,
$$

and

$$
A_{n} \geqq-1, \quad \liminf _{u \rightarrow 0^{+}} u \log w(u)=-\infty,
$$

then $\sum A_{n} e^{-n u}=$ constant.
Changing u into $\log (1 / t)$ immediately yields the result stated above.

Bibliography

1. G. H. Hardy, Divergent series, Oxford, Clarendon Press, 1949.
2. E. C. Titchmarsh, The theory of the Riemann zeta-function, Oxford, Clarendon Press, 1951.
3. J. Korevaar, A very general form of Littlewood's theorem, Nederl. Akad. Wetensch. Proc. Ser. A vol. 57 (1954) pp. 36-45.

Massachusetts Institute of Technology

[^0]: Received by the editors December 11, 1958 and, in revised form, August 1, 1959.

