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It is of course well known that 1 — 1 + 1 — 1 • • •  is Abel-summable

to 1/2, that is to say

1
1 - t + l2 - t3+ ■ ■ ■ -»— as/->l~.

2

It can also be shown that

1
1 - t + /4 - • ■ ■ ± l" ■ ■ ■ -* — as I -* 1-

2

If we consider, however, the rate at which these two functions

approach their limit (1/2) then we find that these are worlds apart!

In fact

1 1 1 1 - t 1 - t
(1 - t + t2 ■ - ■ )-=-=-'-,

2 1 + t       2       2(l + t) 4

whereas an application of the functional equation for the 0-function

gives

1 /   Tre-"-   V'2 /      7T2 1      \

0-I + I--. ..)-Tc~(—)  eip(-r—).

In this note we show that this anomalous behavior persists for the

other functions

(i) 4C*)-£t~i)»f*, »-i,2,.;.,

that namely fk(t) approaches 1/2 very slowly for k odd and very

quickly for k even.

Theorem. If fk(t) are defined by (1) then

A. for any fixed odd k thereisac>0 such that [/»(#) —1/2| >c(l—t),

B. for any fixed even k there is a c>0 such that

\Mt) - 1/2 | < A exp (-c/(l - /)<*),     a = l/(k - 1).

Proof. Our principal tool will be the Mellin inversion formula

which gives
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\        n 2+ioo

—; f        r(í)x-'o¿ = e~x, X > 0.

From this we obtain, by a term by term integration,

—        r(5)x- £ ^—J— = £ (-i)«->e-^
2-KlJ 2-ix „=1 »*' „_i

=  1 -/*(*"*).
Now note that

»   f_j')B-i      / 2 \  M     1
S —7— = ( 1 - TT-) Z — = (1 - 2"0«»f)
n-1 »** \ 2*'/,_i   «*'

and obtain

J        /• 2+ico

(2) —- r(i)«-'(l - 2i-x>)t(ks)ds = 1 -Me-*).
2iri J a-i«.

We now shift the contour from the vertical line Re s = 2 to the line

Re s = —1/¿. (It is assumed that ¿>1.) The estimates

|r(s)|   < Ae-'W, Iff» |   <|*K I = Ims, A,c> 0,

are known to be valid in — l/¿5¡Re sg2, |/| >1 and so the Residue

theorem is applicable.

However, in — l/¿;£Re 5^2, the only pole is seen to be at 5 = 0

with residue (1 — 2)f (0) = 1/2 and so we obtain

I /. -l/Jfc+ÍOO j[

(3) — r(i)*-'(l - 21~*')f (kt)dt =-h(e~x).
2irtJ -i/k-ix 2

Let us now utilize the functional equation of the f-function, namely

(4) ft» = - (2r)« sin 1 sT(l - t)f(l - s).
ir 2

If we introduce this into (3) and then call 1 —¿s = z the result is

1       f2+iM /l   -   Z\ 7T
-; I        ir'Y ( -) r(z) cos —zx«*-1»*^ - 2-*)S(z)dz

¿7TÍ J 2—ioo \        ¿       / 2

(5)

-y-/.(«-).

Proof of A. Here ¿ is odd. If we shift the contour from 2 to 2¿

then the residue theorem is again applicable and it gives one residue

at z = ¿ + l, namely ex where
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2(k)\
c =

Tk+i
(1 _ 2-<*+»)f(*+ ^(-l)«-1)'2.

The remaining contour integral is the same as that in (5) with the

limits changed to 2k —i^, 2k+i<*>. This clearly has magnitude

< x<2*- /. 2*+*»                     / 1   —   2\ 1M ■ r(-)
24-too                I       \        k        / \

dz cxm-i)ik

and so finally, by (5)

1
-fk(e~x) = ex + 0(x2-1'k), k > 1,

which yields A immediately.

Proof of B. Here k is even and so the integrand in (5) is analytic

for all z, Re z>0. We may then shift the contour to the right to the

line Re z = kM+l (M = half an odd integer) and no residues will be

introduced.

We now estimate the resulting integral. We have

| »-«*<»-»)/*(l - 2-*)f(z) |   < xM,

r(z)cos—z   g (kM)\,

I   (1 - z\\     I    / *y\ I

4r(+L--)\
li   \     2        k)\

(y= Imz),

ê Ci

and so the resulting integral is in magnitude

(kM)\
XM ^  C2M(k~l)MXM.

If M is now chosen close to x~"/e, a = l/k—l then the resulting

estimate becomes
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< Ae-'i*"

and B follows immediately. This completes the proof.

These results seem to point to the fact that of all the series

2)(-l)ni/(n) the one which goes "fastest" to 1/2 is £(-l)"¿"2. I

wish to thank J. Korevaar for pointing out that this is actually the

case, in the following sense:

We have seen that | £(-l)n<"2-l/2| ^e-'i^-'K On the other hand,

it is impossible that

2
KO/Cl-0

where 4>(t) ̂ 0 is unbounded as f—>1. It is, in fact, a theorem of Kore-

vaar [3], that if

I £ Ane~nu I   g w(u), u > 0,

and

An ^ — 1,       lim inf u log w(u) = — »,
u->0+

then y"l-<4 Bg~n" = constant.

Changing u into log (1/0  immediately yields the result stated

above.
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