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W. Sierpinski [5] has just published the following theorem:

"The set A of all primes which are divisors of integers of form

2r + l contains all primes of the form 8«+ 3 and infinitely many

primes of the form 8« + l. The set B of all primes which are divisors

of integers of the form 22s+1 —1 contains all primes of the form 8«+ 7

and some primes of the form 8« + l. Every prime of form 8w + l be-

longs either to A or to B. The question whether the set B contains

infinitely many primes of form 8w + l is raised, but remains open."

In this note a simple proof of this result will be given. Moreover,

it will be shown that B contains infinitely many primes of form 8« +1.

More exactly, we prove a little more.

Theorem 1. Let a be a given positive integer. An odd prime p is a

divisor of an integer of form ar + l if and only if a belongs to an even

exponent mod p. The odd prime q is a divisor of an integer of form

a2s+1 — 1 if and only if a belongs to an odd exponent mod q.

Proof. If a belongs to an even exponent 2k (mod p), then

a2k m 1 (mod p),

hence

(ak+ l)(ak - 1)»0 (mod/>),

ak + 1 = 0 (mod p)

since otherwise 2k would not be the exponent to which a belongs

(mod p). Conversely, if p divides ar + l, then

ar = — 1 (mod p),

a2r = 1 (moàp).

The exponent to which a belongs must be a divisor of 2r, but not of r,

and is therefore even.

If a belongs to the odd exponent 2^ + 1 (mod q), then

a2k+l = 1  (mod q),

hence g is a divisor of a2k+1 — 1. Conversely, if g is a divisor of a2s+1 — 1,

then
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a2i+1 m 1  (mod q).

The exponent of a (mod q) must be a divisor of 2s+ 1, and is therefore

odd.
It follows that each odd prime which is relatively prime to a is

either a divisor of an integer of form ar + l or of an integer of form

a2s+1-l.

If, in particular, a = 2, then the primes for which 2 belongs to an

even exponent form the set A of Sierpinski, the other odd primes the

set B. Now 2 is a quadratic nonresidue for the primes p of form

8«+ 3, hence by Euler's criterion

2(*-»/2= _ j (modi),

and 2 belongs to an even exponent. Moreover, 2 is a quadratic residue

for the primes q of form 8«+ 7, hence

24"+3 s 1  (mod q),

and the exponent of 2 is odd. Finally, for p = 8n-\-l we have

24" = 1  (mod p),

and the exponent to which 2 belongs can be even or odd.

B. M. A. Makowski (see [5]) proved that there are infinitely many

primes of form 8« + l which belong to A namely the prime divisors

of 22m-f-l. This result follows here at once from Theorem 1 since 2

belongs to an even exponent for all these prime divisors. There exist

infinitely many such primes since 22™ + l and 22&—|— 1 are relatively

prime for m¿¿k. Finally all these prime divisors for m> 1 are of form

8«-f-l since the odd prime divisors of the 2m+1st cyclotomic poly-

nomial have the form 2m+1z + l.

This is a special case of the following theorem.

Theorem 2. Let p be a prime of form 8w + l. We set

p - 1 = 2eu       (u odd).

If 2 is a 2eth power residue mod p, then p belongs to the set B, otherwise

to A.

Proof.  If 2 is a 2eth power residue, then by Euler's criterion

U*-i)l# m 2« m 1  (mod p),

hence p belongs to B. Otherwise 2 belongs to an even exponent mod p,

and p is an element of A by Theorem 1.

We shall use the following theorems on the biquadratic and octavie
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character of 2. (See, for instance, the paper of A. L. Whiteman [7].)

If p is a prime of form 8w + l, then 2 is a biquadratic residue mod p

if and only if p can be represented as x2 + 64y2. If p is of form 16« + 1,

then 2 is an octavie residue if and only if p can be represented as

x2 + 256y2. If p is of form 16«+9, then 2 is an octavie residue if and

only if p can be represented as x2+64y2, but not as x2 + 256y2.

Theorem 3. The number 2 is a biquadratic nonresidue for the in-

finitely many primes which can be represented as

17x2 + 64xy + 64;y2.

It is an octavie nonresidue for the infinitely many primes of form

16« + 1 which can be represented as

65x2 + 256xy + 256y2

and for the infinitely many primes of form 16«+ 9 which can be repre-

sented as x2 + 256y2.

All these primes belong to the set A.

Proof. Assume that the prime p can be represented by the positive

properly primitive quadratic form

(1) 17x2 + 64xy + 64j-2 = x2 + (4x + 8y)2 = x2 + 16(x + 2y)2.

Then x must be odd and 4x+8y = 4 (mod 8). Hence in the representa-

tion of p as sum of two squares one of the squares is odd and the other

divisible by 16, but not by 64. Since this representation is unique,

p cannot be represented as x2 + 64y2. Hence 2 is a biquadratic non-

residue mod p, and consequently a 2eth power nonresidue, so that

p belongs to A. It was proved by H. Weber [ó] that every positive

properly primitive quadratic form represents infinitely many primes.

(See also E. Schering [4], P. Bernays [l], W. E. Briggs [2].) There-

fore infinitely many primes are represented by (1) and all of them be-

long to A.

Suppose that p is a prime of form 16M + 1 and can be represented

by the form

(2) 65x2 + 256xy + 256/ = x2 + (8x + 16y)2 = x2 + 64(x + 2y)2.

Then p is a biquadratic residue, but an octavie nonresidue since it is

representable as x2 + 64y2 but not as x2+256y2 because x + 2y is odd.

It was proved by A. Meyer [3] that any positive properly primitive

quadratic form represents infinitely many primes which belong to a

given linear form if at least one such prime exists. Since the prime 577
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is represented by the quadratic form (2) for x = y=l and is of form

16« + 1, infinitely many primes of form 16« + 1 are represented by

(2) and all of them belong to A.

Suppose that p can be represented as x2 + 256y2 and is of form

16« + 9. Since £ = 281 = 52 + 256 is such a prime, infinitely many such

primes exist. They belong to A since 2 is an octavie nonresidue for

each of them.

Theorem 4. The number 2 is an octavie residue for every prime of

form 16n-\-9 which can be represented as 65x2 + 256xy + 256y2. All

these infinitely many primes belong to the set B.

Proof. Let q be such a prime. It follows from (2) that 2 is an

octavie residue mod q. Hence q belongs to the set B by Theorem 2.

Since 73 is of form 16«+9 and represented by (2) for x = 3, y= —1,

it follows from the theorem of Meyer that there exist infinitely

many such primes q. This proves the theorem.
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