A NOTE ON METRIC DENSITY OF SETS OF REAL NUMBERS

N. F. G. MARTIN¹

Casper Goffman [1] has shown that the set of points at which the metric density of a set of real numbers exists but is not zero or one is a set of the first category. As a partial converse to this result he showed that for every F_{σ} set of measure zero there exists a measurable set whose density exists at every point of the F_{σ} and has the value 1/2. In this note we extend the last named theorem of Goffman to the following:

THEOREM. Let Z and γ be given where Z is an F_{σ} set of measure zero and γ is a real number such that $0 < \gamma < 1$. Then there exists a measurable set S such that the metric density of S exists at every point of Z and has the value γ .

PROOF. We shall assume that $Z \subset (0, 1)$. Let $Z = \bigcup_{k=1}^{\infty} Z_k$ where Z_k is closed and of measure zero for $k = 1, 2, \cdots$.

We shall define four sequences, $\{G_k\}$, $\{T_k\}$, $\{E_k\}$, and $\{F_k\}$ of sets, where $G_{k+1} \subset G_k$ and $T_{k+1} \subset T_k$, as follows:

Let $G_1 = (0, 1)$, and G_k be an open set which contains $Z - \bigcup_{n=1}^{k-1} Z_n$. Define T_k to be the set $G_k - Z_k$ and require $G_{k+1} \subset T_k$. Since Z_k is closed, T_k is open and consists of a countable number of disjoint open intervals $I_{kj} = (a_{kj}, b_{kj})$. Since $m(I_{kj}) < 1$, where m denotes Lebesgue measure, there exists an integer N_{kj} such that

$$\frac{1}{N_{kj}+1} \le \frac{1}{2} m(I_{kj}) \le \frac{1}{N_{kj}}.$$

Let $\alpha_n^{kj} = a_{kj} + (1/2)m(I_{kj}) = b_{kj} - (1/2)m(I_{kj}) = \beta_n^{kj}$ for $n = N_{kj}$ and for $n \ge N_{kj} + 1$ let

$$lpha_n^{kj} = a_{kj} + rac{1}{n}, \qquad eta_n^{kj} = b_{kj} - rac{1}{n},$$
 $A_n^1(k,j) = \left\{ x : lpha_n^{kj} \le x < lpha_{n-1}^{kj} \right\},$
 $A_n^2(k,j) = \left\{ x : eta_{n-1}^{kj} \le x < eta_n^{kj} \right\}.$

The sets $A_n^i(k,j)$, i=1, 2; $n \ge N_{kj}+1$ are disjoint and

Presented to the Society, April 17, 1959; received by the editors May 4, 1959 and, in revised form, July 2, 1958.

¹ This paper forms a part of the author's doctoral dissertation written at Iowa State College under the direction of Professor H. P. Thielman.

$$I_{kj} = \bigcup_{n=1}^{\infty} \left[A_n^1(k,j) \ A_n^2(k,j) \right].$$

For each of the sets $A_n^i(k,j)$ let $A^iE_n^{kj}$ be any measurable set contained in $A_n^i(k,j)$ for which $m(A^iE_n^{kj}) = \gamma m(A_n^i(k,j))$, i=1, 2. Let $A^iF_n^{kj}$ be defined by $A^iF_n^{kj} = A_n^i(k,j) - A^iE_n^{kj}$. Then

$$m(A^{i}F_{n}^{kj}) = (1 - \gamma)m(A_{n}^{i}(k, j)).$$

Finally let

$$E_k = \bigcup_{j=1}^{\infty} \bigcup_{n>N_{kj}} (A^1 E_n^{kj} \cup A^2 E_n^{kj}),$$

$$F_k = \bigcup_{j=1}^{\infty} \bigcup_{n>N_{kj}} (A^1 F_n^{kj} \cup A^2 F_n^{kj}).$$

The sets E_k and F_k are disjoint and $T_k = E_k \cup F_k$. Returning to the sets G_k restrict G_{k+1} so that

(1)
$$m(G_{k+1} \cap A^{i}E_{n}^{kj}) \leq \frac{1}{n^{k}} m(A^{i}E_{n}^{kj}),$$

$$m(G_{k+1} \cap A^{i}F_{n}^{kj}) \leq \frac{1}{n^{k}} m(A^{i}F_{n}^{kj})$$

for i=1, 2; $n \ge N_{kj}+1$; $j=1, 2, \cdots$, which is possible since Z has measure zero.

The set S defined by

$$S = \bigcup_{k=1}^{\infty} (E_k - G_{k+1})$$

has density γ at every point of Z.

For, let z be any element in Z, and let h be the smallest positive integer such that $z \in Z_h \subset G_h$. Let I be an open interval containing z and contained in G_h . Restricting m(I) < 1/2 there exists an integer p > 1 such that

$$\frac{1}{p+1} \le m(I) < \frac{1}{p}.$$

Since $z \in \mathbb{Z}_h$, $z \notin T_h$ and by (2) if an end point of I falls in $A_n^i(h, j)$ then $n \ge p$ and

$$m(A_n^i(h,j)) = \frac{1}{n(n-1)} \le \frac{2}{p(p+1)}$$

The interval I consists of the following:

- 1. A set H composed of disjoint sets $A_n^i(h, j)$ where i=1, 2 and $n \ge p$.
- 2. A set J which consists of two open or half open intervals, possibly empty, at the ends of I each of whose lengths does not exceed 2/p(p+1) so that $m(J) \le 4/p(p+1)$.
 - 3. A set $N = Z \cap I$ of measure zero.

We will show first that

(3)
$$(\gamma - 4/p)m(I) \leq m(H \cap E_h) \leq \gamma m(I),$$

$$(1 - \gamma - 4/p)m(I) \leq m(H \cap F_h) \leq (1 - \gamma)m(I).$$

We have

$$m(H \cap E_h) = \sum_{i} m(A^i E_n^{hj}) = \gamma \sum_{i} m(A^i_n(h, j)) = \gamma m(H) \leq \gamma m(I),$$

where the summation is taken over all n, j and i for which $A_n^i(h,j) \subset I$. Also, $m(H \cap F_h) = (1-\gamma)m(H) \leq (1-\gamma)m(I)$.

From the maximum measure of J and inequality (2) we have $m(J) \le (4/p)m(I)$. Thus since m(I) = m(H) + m(J), $m(H) \ge (1 - 4/p)m(I)$. Therefore,

$$m(H \cap E_h) \geq (\gamma - 4/p)m(I)$$

and

$$m(H \cap F_h) \geq (1 - \gamma - 4/p)m(I).$$

Thus inequalities (3) are satisfied.

Next it will be shown that for all positive integers q

(4)
$$m(G_{h+q} \cap H \cap E_h) \leq m(H \cap E_h)/p^q,$$

$$m(G_{h+q} \cap H \cap F_h) \leq m(H \cap F_h)/p^q.$$

From the inequalities (1) and the fact that $n \ge p$,

$$m(G_{h+q} \cap H \cap E_h) = \sum m(G_{h+q} \cap A^i E_n^{hj})$$

$$\leq \sum m(A^i E_n^{hj})/n^q \leq m(H \cap E_h)/p^q$$

where the summations are taken over all n, j, i for which $A_n^i(h, j) \subset I$. The second inequality in (4) is obtained in the same way. Since $G_{h+q} \supset E_{h+q}$, from (4) and (3) we obtain

$$m(E_{h+q} \cap H \cap E_h) \leq \gamma m(I)/p^q,$$

$$m(E_{h+q} \cap H \cap F_h) \leq (1-\gamma)m(I)/p^q,$$

1960]

for $q = 1, 2, \cdots$. Now

$$I = (H \cap E_b) \cup (H \cap F_b) \cup N \cup J.$$

so

(5)
$$m\left(I \cap \bigcup_{k=h}^{\infty} E_{k}\right) \leq m(H \cap E_{h}) + \sum_{k=h+1}^{\infty} m(E_{k} \cap H \cap E_{h}) + \sum_{k=h+1}^{\infty} m(E_{k} \cap H \cap F_{h}) + m(J) < \left(\gamma + \frac{5}{p-1}\right) m(I).$$

Since $I \supset (H \cap E_h) \cup (H \cap F_h)$ and $E_h \cap F_h = \emptyset$,

$$I \cap (E_h - G_{h+1}) \supset (H \cap E_h) - (G_{h+1} \cap H \cap E_h)$$

and

(6)
$$m(I \cap (E_h - G_{h+1})) > (\gamma - 5/p)m(I).$$

However,

$$I \cap (E_h - G_{h+1}) \subset I \cap S \subset I \cap \bigcup_{k=1}^{\infty} E_k$$

so that application of inequalities (5) and (6) gives

$$\gamma - \frac{5}{p} < \frac{m(I \cap S)}{m(I)} < \gamma + \frac{5}{p-1}.$$

BIBLIOGRAPHY

1. Goffman, Casper, On Lebesgue's density theorem, Proc. Amer. Math. Soc. vol. 1 (1950) pp. 384-387.

IOWA STATE COLLEGE