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Sn, and K is then a fibre bundle over S". Consequently we have the

following commutative diagram of exact sequences

-► Uk(On)  -» Uk(0,+ l) -* n»(S») -* Ut-liOn) -* Uk-i(On+1) -» •  • •

j, í *       i i*        i y*       i i*        \, i*

->iik(Ko) -» Hk(jq -» n*(s») -»n^^íTo)-*n*_i(z) -» • • •

where7* is the identity. It is easily seen that Ker(i*: YLk(On+\)—>Hk(K))

is the image under II*(0B)—*II*(0„+i) of Ker(4: Hk{On)—*Tlk(Ko)).

Since this last kernel is O the theorem follows.
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A NOTE ON GAUSS' FIRST PROOF OF THE QUADRATIC
RECIPROCITY THEOREM

L. CARLITZ

We assume that the reader is familiar with Mathews' exposition

[l, pp. 45-50] of the inductive proof of the reciprocity theorem.

There are three main cases:

I. pRq,
II. pNq, q = 3 (mod 4),

III. pNq, q=i (mod 4).
In I we have e2 — p = qf, in II we have e2-\-p = qf. In III we have

first the lemma which asserts the existence of a prime p' <q such

that qNp'. This implies p'Nq, so that pp'Rq and so e2 — pp'=qf. In

each of the cases I and II it is necessary to treat two sub-cases; in

case III there are four sub-cases. Thus in all there are eight cases to

consider.

We should like to point out in this note that it is possible to handle

all cases simultaneously by introducing a little notation. To begin

with, we define

Received by the editors September 22, 1959.



564 L. CARLITZ [August

1      (case I)

r = ■ — 1      (case II)

.    p'    (case III).

Thus we have the single equation

(1) e2 - rp = qf,

where e is even and <q, f is odd and |/| <q.

Next we put

d=(f,rp),       / = if,        e = de',        rp = dd',

so that (1) becomes

(2) de'2 - d' = gj';

moreover

(/', dd') = (d,d') = (q, dd') = 1.

From (2) we get qf'= —d' (mod 4), so that

(3) q + d' +f = 1  (mod 4).

Now from (2) we also get

fö-tö-m-../
which gives

Vdd'J " \~T/ V a7/ \ tó7/ '

We now apply the generalized reciprocity theorem :

(m\( n\
_ )( _ j =   _  ICm-lHn-l)/^

n )\ m)

where m and n are odd and relatively prime; also one of the numbers

may be negative. The special cases m or n = +1 are included. Then

we get, since (dd'/f) = 1,

(4) (!) = (-1)»,

where
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X = — (<* - \)(-d' - 1) + — (f - l)(á¿' - 1).
4 4

Using (3) we find that

1                                      1
X = — (d - \)(-d' - 1)-(o + á')(¿¿' - 1)

4 4

1                                        1
sa — (d - l)(-d' - 1)-(d' + l)(<f + ¿' - 2)

4 4

--(?-l)(dá'-l)
4

1 1
=-(¿' + i)(2¿ + ¿' - 3)-(? - \)(dd' - 1)

4 4

¿ - i(^ - l) -l(d' + i)(¿ - l) - 1 (q - V)(dd' - 1)
4 2 4

-—<?- 1)<*-1)  (mod 2);
4

where at the last step we used rp = dd'. Thus (4) becomes

(5) (—j = (-1)(«-1)('-p-i)/4.

In cases I and II (5) is in obvious agreement with the reciprocity

theorem; in III there is also agreement since we have qNp'. Thus

in III (5) reduces to

(i)~■ P

which is the desired relation.
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