S^{n}, and K is then a fibre bundle over S^{n}. Consequently we have the following commutative diagram of exact sequences

$$
\begin{aligned}
& \cdots \rightarrow \Pi_{k}\left(O_{n}\right) \rightarrow \Pi_{k}\left(O_{n+1}\right) \rightarrow \Pi_{k}\left(S^{n}\right) \rightarrow \Pi_{k-1}\left(O_{n}\right) \rightarrow \Pi_{k-1}\left(O_{n+1}\right) \rightarrow \cdots \\
& \downarrow i_{*} \quad \downarrow i_{*} \quad \downarrow j_{*} \quad \downarrow i_{*} \quad \downarrow i_{*} \\
& \cdots \rightarrow \Pi_{k}\left(K_{0}\right) \rightarrow \Pi_{k}(K) \rightarrow \Pi_{k}\left(S^{n}\right) \rightarrow \Pi_{k-1}\left(K_{0}\right) \rightarrow \Pi_{k-1}(K) \rightarrow \cdots
\end{aligned}
$$

where j_{*} is the identity. It is easily seen that $\operatorname{Ker}\left(i_{*}: \Pi_{k}\left(O_{n+1}\right) \rightarrow \Pi_{k}(K)\right)$ is the image under $\Pi_{k}\left(O_{n}\right) \rightarrow \Pi_{k}\left(O_{n+1}\right)$ of $\operatorname{Ker}\left(i_{*}: \Pi_{k}\left(O_{n}\right) \rightarrow \Pi_{k}\left(K_{0}\right)\right)$. Since this last kernel is O the theorem follows.

References

1. D. Montgomery and L. Zippin, Topological transformation groups, New York, Interscience Publishers, 1955.
2. N. Steenrod, The topology of fibre bundles, Princeton, Princeton University Press, 1951.

University of Notre Dame

A NOTE ON GAUSS' FIRST PROOF OF THE QUADRATIC RECIPROCITY THEOREM

L. CARLITZ

We assume that the reader is familiar with Mathews' exposition [$1, \mathrm{pp} .45-50$] of the inductive proof of the reciprocity theorem. There are three main cases:
I. $p R q$,
II. $p N q, q \equiv 3(\bmod 4)$,
III. $p N q, q \equiv 1(\bmod 4)$.

In I we have $e^{2}-p=q f$, in II we have $e^{2}+p=q f$. In III we have first the lemma which asserts the existence of a prime $p^{\prime}<q$ such that $q N p^{\prime}$. This implies $p^{\prime} N q$, so that $p p^{\prime} R q$ and so $e^{2}-p p^{\prime}=q f$. In each of the cases I and II it is necessary to treat two sub-cases; in case III there are four sub-cases. Thus in all there are eight cases to consider.

We should like to point out in this note that it is possible to handle all cases simultaneously by introducing a little notation. To begin with, we define

$$
r=\left\{\begin{array}{cl}
1 & (\text { case I) } \\
-1 & (\text { case II) } \\
p^{\prime} & (\text { case III })
\end{array}\right.
$$

Thus we have the single equation

$$
\begin{equation*}
e^{2}-r p=q f, \tag{1}
\end{equation*}
$$

where e is even and $<q, f$ is odd and $|f|<q$.
Next we put

$$
d=(f, r p), \quad f=d f^{\prime}, \quad e=d e^{\prime}, \quad r p=d d^{\prime},
$$

so that (1) becomes

$$
\begin{equation*}
d e^{\prime 2}-d^{\prime}=q J^{\prime} ; \tag{2}
\end{equation*}
$$

moreover

$$
\left(f^{\prime}, d d^{\prime}\right)=\left(d, d^{\prime}\right)=\left(q, d d^{\prime}\right)=1
$$

From (2) we get $q f^{\prime} \equiv-d^{\prime}(\bmod 4)$, so that

$$
\begin{equation*}
q+d^{\prime}+f^{\prime} \equiv 1(\bmod 4) \tag{3}
\end{equation*}
$$

Now from (2) we also get

$$
\left(\frac{d d^{\prime}}{f^{\prime}}\right)=\left(\frac{q d f^{\prime}}{d^{\prime}}\right)=\left(\frac{-q d^{\prime} f^{\prime}}{d}\right)=1
$$

which gives

$$
\left(\frac{q}{d d^{\prime}}\right)=\left(\frac{-d^{\prime}}{d}\right)\left(\frac{d}{d^{\prime}}\right)\left(\frac{f^{\prime}}{d d^{\prime}}\right)
$$

We now apply the generalized reciprocity theorem:

$$
\left(\frac{m}{n}\right)\left(\frac{n}{m}\right)=-1^{(m-1)(n-1) / 4}
$$

where m and n are odd and relatively prime; also one of the numbers may be negative. The special cases m or $n= \pm 1$ are included. Then we get, since $\left(d d^{\prime} / f^{\prime}\right)=1$,

$$
\begin{equation*}
\left(\frac{q}{d d^{\prime}}\right)=(-1)^{\lambda} \tag{4}
\end{equation*}
$$

where

1960] GAUSS' FIRST PROOF OF THE QUADRATIC RECIPROCITY THEOREM 565

$$
\lambda=\frac{1}{4}(d-1)\left(-d^{\prime}-1\right)+\frac{1}{4}\left(f^{\prime}-1\right)\left(d d^{\prime}-1\right) .
$$

Using (3) we find that

$$
\begin{aligned}
\lambda \equiv & \frac{1}{4}(d-1)\left(-d^{\prime}-1\right)-\frac{1}{4}\left(q+d^{\prime}\right)\left(d d^{\prime}-1\right) \\
\equiv & \frac{1}{4}(d-1)\left(-d^{\prime}-1\right)-\frac{1}{4}\left(d^{\prime}+1\right)\left(d+d^{\prime}-2\right) \\
& -\frac{1}{4}(q-1)\left(d d^{\prime}-1\right) \\
\equiv & -\frac{1}{4}\left(d^{\prime}+1\right)\left(2 d+d^{\prime}-3\right)-\frac{1}{4}(q-1)\left(d d^{\prime}-1\right) \\
\equiv & -\frac{1}{4}\left(d^{\prime 2}-1\right)-\frac{1}{2}\left(d^{\prime}+1\right)(d-1)-\frac{1}{4}(q-1)\left(d d^{\prime}-1\right) \\
\equiv & \frac{1}{4}(q-1)(r p-1)(\bmod 2)
\end{aligned}
$$

where at the last step we used $r p=d d^{\prime}$. Thus (4) becomes

$$
\begin{equation*}
\left(\frac{q}{r p}\right)=(-1)^{(q-1)(r p-1) / 4} \tag{5}
\end{equation*}
$$

In cases I and II (5) is in obvious agreement with the reciprocity theorem; in III there is also agreement since we have $q N p^{\prime}$. Thus in III (5) reduces to

$$
\left(\frac{q}{p}\right)=-1
$$

which is the desired relation.

Reference

1. G. B. Mathews, Theory of numbers, Cambridge, 1892.

Duke University

