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H*(üG2, Z) S Z[x, h(x), t(x)\ <g> Z(y)

where h(x) = °° and i(x) is defined by the greatest divisors g(x")

= n\/g(un). In particular, g(x2) = l so that (1.15) fails for x2 and

H*(Q,G2, Z) has no system of divided powers.
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ANOTHER CUTPOINT THEOREM FOR PLANE CONTINUA

F. burton jones1

If the subcontinuum M of a topological 2-sphere S does not sepa-

rate S and is locally connected, then each pair of points of M, which

are not separated in M by a point of M, belongs to the closure of a

connected domain (of S) lying in M. This is true because each such

pair of points belongs to a simple closed curve / lying in M and one

of the complementary domains of / is a subset of M. However, with-

out local connectedness such a simple closed curve may fail to exist.

In fact, the proposition would then be false because (to take an ex-

treme case) of the existence of indecomposable subcontinua of S

which fail to separate S. While no point of an indecomposable con-

tinuum separates it, every point of it cuts it. Recently I showed [l]

that this stronger form of separation (or rather the lack of it) is

sufficient to restore the validity of the above proposition in the ab-

sence of local connectedness if a certain restriction were placed upon
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the pair of points under consideration. It is the purpose of this paper

to remove even this restriction.

Notation and terminology. If p and q are points of a continuum

M and x is a point of M— (p-\-q), x is said to cut p from q in M if every

subcontinuum of M which contains p+q contains x. By an interior

point of M is meant a nonboundary point of M. By "the plane" is

meant the Euclidean number plane with d denoting the usual

Pythagorean distance function.

Theorem. Suppose that M is a compact subcontinuum of the plane

S which does not separate S. If no point of M cuts the point p from the

point q in M then some component of the set of interior points of M

contains both p and q in its closure.

Indication of proof. If either p or q is an interior point of M, the

theorem follows from a previous result [l]. So we have left to prove

the theorem for the case when both p and q are boundary points of M.

Suppose that e is a positive number such that 2e<d(p, q). Let

Cp(e) and Cq(e) denote circles of radius e centered on p and q respec-

tively. There exists a simple domain 1(e) which contains M such that

if J(e) denotes the boundary of 1(e), y is a. boundary point of M and

z is a point of 1(e) + /(e) then d[y, J(e)] <e and d(z, M) <e. There

exist arcs Tp(e) and Tq(e) in Cp(e) and Cq(e) respectively such that

each is minimal with respect to separating p from q in 1(e) + J(e)

and Tp(e) separates p from q-\-Tq(e) in 1(e)-\-J(e). It follows that

Tq(e) separates p-\-Tp(e) from q in 1(e)-\-J(e).

Since Tp(e) and Tq(e) have only their endpoints in /(e), there exist

in J(e) two nonintersecting arcs A(e) and B(e) such that Tp(e)+A(e)

-\-Tq(e)-\-B(e) is a simple closed curve H(e). Let D(e) denote the

bounded complementary domain of H(e). If z is a point of D(e) +H(e),

then d(z, M) <e. Any subcontinuum of M which contains p+q con-

tains a subcontinuum irreducible from Tp(e) to Tq(e) which lies in

Tp(e)+D(e) + Tq(e).

Now let L(e) denote a continuum lying in Tp(e)-\-D(e)-\-Tq(e)

which intersects both Tp(e) and Tq(e) such that if z belongs to L(e),

then d[z, A(e)]=d[z, B(e)]. There exists a simple infinite sequence

a of values of e such that D(e)-\-H(e) converges to a subset of M

and L(e)^L as e—>0 in a. The set L has the following properties:

(a) L is a continuum containing both p and q,

(b) i is a subset of M, and

(c) every point of L — (p+q) is an interior point of M. Properties

(a) and (b) are evident. So it remains only to prove property (c).

Let x be a point of L — (p+q). Since x does not cut p from q in
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M, there exists a subcontinuum K of M which contains p-\-q but

not x. Let S be a positive number such that 48 = d(x, K) and let

Us(x) and Ua(x) be the circular regions centered on x of radius 5

and 35 respectively. When e (in a) is sufficiently small [Tp(e)-\-Tq(e)]

■ [f/3s(x)]=0 but L(e)- U¡(x)9í0. Let y be some point of L(e) • Ut(x),

let r = 5-\-d(x, y) and let Ur(y) be a circular region of radius r and

center y. Obviously Uu(x)DUr(y)D U,(x). So [Tp(e) + Tq(e)]-Ur(y)

= 0. If A(e)-Ur(y)^0, let / be a point of A(e)-Ur(y) such that

^(/i y)=d[y, A(e)]. But y belongs to L(e). Hence there exists in

Ur(y) a point g of B(t) such that d(g, y)=d[g, B(e)]=d(f, y). The

sum of the straight line intervals from y to /and from y to g is an arc

Tv lying in Ur(y), having only its endpoints/ and g in H(e), and con-

taining the point y of D(e). Hence £„-(/+g) C£>(«). But Ty-K = 0

and i£ contains a continuum lying in rp(e) -\-D(e)-\-Tq(e) irreducible

from Tp(e) to Tt(e). Since the points / and g separate 7"P(e) from

Tq(e) in ií(í) this involves a contradiction [2, Theorem 17, p. 167].

Hence Ur(y) -H(e) =0 and since y belongs to D(e), Ur(y) CZD(e); so

for sufficiently small values of e (in a), U¡(x) C-D(«). Consequently

£/a(x) is a subset of M and x is an interior point of M.

The continuum L contains a subcontinuum N which is irreducible

from p to q; N—(p-\-q) is connected and each of its points is an in-

terior point of M. The component of the set of interior points of M

which contains N—(p-\-q) has both p and q in its closure.

Counterexample. The converse of the theorem is false. Let L be

the closure of the graph of y = sin 1/x (—7r^x^7r) together with one

arc (the lower one) of the square whose vertices are (+7r, ±ir) so

that this arc joins the endpoints of the graph, and let M denote L

together with its bounded complementary domain D. Obviously

Z5 = Mbut (0, -1) cuts (0, -tt) from (0, 1) in M.
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