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1. Introduction. In [3]3 and [4] Trjitzinsky considers a one param-

eter group of homeomorphisms acting on a metric space. He considers

an equivariant mapping which assigns to each point of the space a

closed set which contains that point, and then introduces the notion

of recurrence (stability). Here we consider a transformation group

(X, T, w), where X is a metric space with the metric d; T is a topo-

logical group; and if is a continuous mapping of TXX onto itself

satisfying the following: If e is the identity of T then ir(e, x) =ex = x,

and if t and ¿' £ Tand x£I then w(t, w{t', x)) =t{t'x) = {tt')x = ir{tt', x).

The group T is allowed to act on the subsets of X and we discuss con-

tinuity, recursion, and a conjecture raised in [4, p. 99].

Notation. A(X)= {Bex-. E^0}, B(X) = {ECX: B**0, E
compact}, K(X)={ECX:E^0 and closed}, C(X)={ECX:
E?¿0 and compact}.

Definition 1.1. If (X, d) is a metric space then the Hausdorff

pseudo-metric h on A (X) induced by d is given by

h(D, E) = max(Âi(Z?, E), fa(Ê, D))

where

h(D, E) = sup{d(*, E):xE.D}.

If h is restricted to K(X) or C{X) then h is a metric. The remainder

of the discussion will concern itself primarily with K(X) and C(X).

The results obtained may be applied to A(X) and B(X) after making

the observation that K(X) and C(X) are homeomorphic to the quo-

tient spaces obtained from A(X) and B(X) when one identifies a

set with its closure.

Definition 1.2. If (X, T, w) is a transformation group then in the

triple (A(X), T, w)[(B(X), T, *■), (K(X), T, *■), (C(X), T, tt)] we let
w(t, E)=t{E)= \tx:x<EE) for E<EA(X) [B(X), K(X), CÇK)].

2. Continuity. In the following sections we will always have in

mind a transformation group (X, T, tt). If i£T then the t transition

of X [K(X), C(X)] will be the mapping
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7T(: X -» X [K(X) -» K(X), C(X) -» C(X)]

defined by «•*(*) = /x for x£X [tt((£) = i(£) for £GC(X) or K(X)].

Theorem 2.1. J/ each t transition of X is uniformly continuous then

so is each t transition of K(X).

Proof. [2, p. 170].

Theorem 2.2. If X and T are locally compact then (C(X), T, ir) is

a transformation group.

Proof. The homomorphism and identity properties are clear and

we need only show that ir is continuous on TXC(X). Let (to, £)

GTXC(X) and let e>0 be arbitrary. Since X is locally compact

there is an 77>0 such that E(r¡) = [x: d(x, E)^rj\ is compact and in

T there is a compact neighborhood V of e. It follows that toVXE(r¡)

is a compact neighborhood of (¿0, E) in TXX and thus ir is uniformly

continuous on this neighborhood. Consequently there is a 5>0, and

<r¡, and a neighborhood U of e, UQ V, such that if t(EtoU, and x and

y^E(r¡), such that d(x, y)<8, then d(tx, t0y) <e/2. If DEC(X) is

chosen so that h(E, D) < 5 and t G kU then hx(tD, t0E)

= sup{d(/x, toE): íxC/jD} <« and similarly hi(t0E, tD) <e.

Corollary 2.3. // -k is uniformly continuous on TXX then

(K(X), T, ir) is a transformation group.

Theorem 2.4. // {X, d') is a separable, locally compact, metric space

and if T is locally compact, then there is a metric d equivalent to d' such

that (K(X), T, 7r) is a transformation group if K(X) has the Hausdorff

metric h induced by d.

Proof. Since X is locally compact and separable we can express X

as the countable union of compact sets. It follows that if X is the one

point compactification of X then X has a countable base and is thus

metrizable by a metric d. The injection i: X-^X is a homeomorphism

into X and thus d is equivalent to d' and X may be metrized by d.

Let h be the Hausdorff metric induced by d on K(X) and K(X).

Letting /(oo) = co for all i£T and applying Theorem 2.2 we see that

(K(X), T, 7r) is a transformation group. We define the mapping

j:K(X)->K(X) by j(£) =Cl{i(£)} =Cl{i(x): x£E} which indi-
cates closure in X. We see that j is an isometry since

h{D, E) = h{i{D), i{E)) - h(C\{i(D)}, Cl{*(£)}) = h(j(D),j(E))

and thus (K(X), T, ir) is a transformation group since tj=jt for all

¿ET and h(tE, tD)=h(tj(E), tj(D)).
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Corollary 2.5. // (X, d') is a locally compact, separable, metric

space then there is a metric d equivalent to d' such that each t transition

of (K(X), h) is continuous where h is the Hausdorff metric induced by d.

3. Recursion. Following Gottschalk and Hedlund [l, p. 21] we let

21 be a distinguished class of subsets of T which are called admissible.

Definition 3.1. T is recursive at E£.A(X) if for each x£.E and

each neighborhood U of x, UdX, there is an admissible set SC.T

such that sEC\Ut£0 for each s O.S.

Definition 3.2. T is regionally recursive at EElA(X) if for each

xÇzE and each neighborhood U of x and V of E, U and VC.X, there

is an admissible set S(ZT such that sVCMJ^0 for each s£S.

We will say that T is recursive [regionally recursive] on A(X),

B(X), C(X) or K{X) if T is recursive [regionally recursive] at each

point of A(X) or B(X), C(X) or K(X) respectively. If in the above

definitions E reduces to a single point {x} then the definitions are

those given in [l, p. 21 ]. It is clear that T is recursive [regionally

recursive] on X if and only if T is recursive [regionally recursive]

onA(X).

For the remainder of the paper we let {P(i)}, t£I= {1, 2, 3 ■ ■ ■ },

be a sequence of subsets of T and define an admissible set to be one

which meets each P(i).

Theorem 3.1. If each t transition of C(X) is continuous and if R is

the set of T recursive points of C(X) then,

(a) R is a G» subset of C{X).

(b) If T is regionally recursive on X, Ris a residual subset of C(X).

Proof. If we let E(n, m) be the collection of all E(E.C(X) for which

there is an x£E such that d(x, tE)^l/m for all /£P(ra), then

R = C(X)— U„,m=i E(n, m). If {E¡), jG.1, is a sequence in E(n, m)

such that Ej—^E then in each £,■ we let x, be chosen so that d{x¡, tEj)

e^l/m for all i£P(«)- For each .;'£/ there is a yy££ such that

d(xj, yj)—*Q and since E is compact there is an infinite subset VÇJ.

and a y££ such that if k ranges over I' then y*;—>y and consequently

Xk—»y. If £££(«, m) then there is a /£P(m) for which d(y, Œ)

= \/m—r¡ where rj>0. Since t is continuous on C(X) there is a

ô>0 such that if h(E, D)<ô then h(tE, tD) <ij/4 and there is a ¿£/'

such that d(y, xk) <rç/4- It follows that

d(xk, tEk) ^ d(xk, y) + d(y, tEk)

g d(xk, y) + d(y, tE)+^-^--^~< —
2       m       A       m
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This is clearly impossible and it follows that each E(n, m) is closed

and (a) is proved.

Assume now that T is regionally recursive on X. If H(n, m) is the

set of all x£X for which there is a ¿GP(re) such that d(x, tx) <\/m

then each H(n, m) is open and dense in X [l, p. 25]. If e>0 is arbi-

trary and if £££(w, m) we cover £ with a finite number of spheres

of radius €. In each such sphere there is an xy£.ri(«, m). If D = Uxj

then D is compact and h(E, D)<e and DQE(n, m). It follows that

each E(n, m) is nowhere dense and (b) is proved.

Lemma 3.2. If UdX is a dense open set such that X — Ut¿0 and if

S= J£: E(E.K(X) and d(E, X— U)>0} then @ is open and dense in

K(X).

Proof. Clearly @ is open. If e>0 is arbitrary and if D<E.K(X),

then if we let £= {x: d(x, D) <e} it suffices to show that ££(£• Let

F = EC\U and let U{n)={x: d(x, X-F)^\/n). Since U is dense

and open we have h(E, £)=0 and F = \Jnei U(n) and £/(»)£(£. It

follows that h(E, £/(»)) =h(F, [/(«))-K) as«^».

Theorem 3.3. // each t transition of K(X) is continuous and if T is

regionally recursive on X and if R is the set of recursive points of K(X)

then R is a residual subset of K(X).

Proof. If H(n, m) is defined as in Theorem 3.1 then each Hin, m)

is a dense open subset of X and by Lemma 3.2 each K(H(n, m)) con-

tains a dense open subset of K(X). If £Gflm,„_i K(H(n, m)) then

££i? since if x££ and U is a neighborhood of x there is an m such

that S(x, i/m)CZU and thus for each P{n) there is a t„ such that

UC\tnE?i0. The set }/„}, «£/, is extensive. It follows that

-?OnOT,„_i K(H(n, m)) and so R is a residual.

It is important to note that if X is complete then so is C(X) and

K(X) or if X is locally compact then so is C(X) [2, p. 161]. In these

cases the residuals of C(X) and K(X) are dense.

4. Recursion and an equivariant mapping. In this section <j> will

be a continuous mapping of X into K(X) such that x£$(x) for all

x£X, and t<j>=<j>t for all tÇ.T.

Definition 4.1. <pT is regionally recursive on X if for each xÇlX

and each neighborhood U of x there is an admissible set SCZT such

that

U   4>{y) C\s  U   <Ky) ̂ 0 for all s G S.
ve v ¡/eu

Definition 4.2. <j>T is almost recursive at x if for each neighbor-
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hood tO$(x) there is an extensive set SQTsuch that Uí^s4>(x) ^0

for all sGS.

We remark that since d(E, D)^h(E, D) for £, D£A(X) it follows

that h((j>(x), 4>{y)) is simultaneously continuous in x and y.

Theorem 4.3. // R(ZX is the set of almost recursive points then

(a) Ris a Gs subset of X.

(b) If <¡>T is regionally recursive then R is a residual subset of X.

Proof. If E(n, m) is the set of all xgl such that d(<j>(x), t4>{x))

^1/m for all /G£(«) then E(n, m) is closed since if a sequence

\Xj} of E(n, m) converges to x then d(4>(xj), t<j>(xj)) converges to

d(4>(x), t(f>(x)) for tÇzT. If there is an E(n, m) which is somewhere

dense then there is an e>0, 0<e<l/w, and a yG.E(n, m) such that

the e sphere about y, S(y, e)CE(n, m). Choose 5>0 and <e such

that if x£S(y, 5) then h(<j>(x), <p{y)) <«/2. Since 4>T is regionally re-

cursive there is a t£:P(n) such that Uzesív.s) (¡>(z)r\t\J2GS(V,s) 4>(z)t£0.

It follows that there are z and w£5(y, 5) for which 4>(z)C\t<¡>(w)7í0

and h($(z), <¡>(w)) ^h(cp(z), <p(y)) +h(<f>(y), 4>(w))<e. If uG4>(z)ÍM<j>(w)

then

d(<t>(w), t(j>(w)) S d(u, <p(w)) ̂  sup{¿(i>, <j>(w)): v G <K2)}

1
g h(<j>(z), 4>{w)) < e < —

m

and therefore w(£E(n, m) but this contradicts wGS(y, d)C.E(n, m)

and thus E(n, m) is nowhere dense. Since R = X — Un,m=i E(n, m) our

conclusions follow.

In [4, p. 99] Trjitzinsky considered T to be a one parameter group

and defined L+(<p(x)) to be the set of all points y(E.X such that

lim inf¡,+0!> d(y, t<¡>(y)) =0. He conjectured that if for all x in a dense

subset of X we have L+(4>(x)) D<£(x) then there is a residual such that

for all x in this set lim inff_+00 d(x, t<j>(x)) =lim infi^_M d(x, t<j>(x)) =0.

If we let P(i) — (*, +00) and P( —t) = (— », — i) for ¿G-f then Theo-

rem 4.2 proves this conjecture.

If the fact that xG<£(x) is dropped then Trjitzinsky's conjecture is

false because 4>T may not be regionally recursive. Consider the fol-

lowing example. Let Z=CXC where Cis the unit circle. Let (Z, T, T)

be the transformation group given by the solution to the differential

equations

dx dv
— = a(x2 + y2),      — = b(x2 + y2),
dt dt
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where x and y are coordinates modulo one and a/b is irrational. There

is a point z£Z such that Tz is Poisson stable (+) but not ( — ). The

set of points which are Poisson stable (+) and ( —) are dense in Z.

In £3 with coordinates (£, 77, r) consider the cylinder

Y= \y:y= (£, v, r), ? + v2 = l}-

Define the transformation group (Y, T, A) as follows:

A(i, y) = t{y) = t{$, v, r) = (£, v, t + I).

Imbed Z in E3 such that ZC\Y=0 and let X = Z\JY. We now

define (X, T, ir) and <j>: X—>C(J*Q as follows:

■r(t, x) = T(t, x) for x £ Z,

x(i, #) = A(¿, *) for x £ Y,

4>(x) = a; for x £ Z,

0(#) = ir(r, z) = t(3) for a; £ F and íc = (£, 17, t).

All the conditions of Trjitzinsky's conjecture are satisfied except

x(El4>(x) and for each x£ Y we have lim inf^-» d(t<t>(x), <f>(x)) ̂0 and

F is category II in X.

The hope that the conclusion of Theorem 4.2 can be strengthened

to read "then <j>T is recursive on a residual" is in vaim Let X = £2

with coordinates x = (xi, x2) and define (X, T, 7r) for T the additive

group of the reals as follows: ir(t, x) = (xie\ xtf1). If we define 4>{x)

— {y: yi+yaá^x+x^} then <j>T is regionally recursive on X, where an

admissible set is one that meets each open infinite interval, but for

x?¿(0, 0) we have L~(<p(x)) £</>(#) properly.
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