UNIVERSAL MINIMAL SETS1

ROBERT ELLIS

Let (X, T) and (Y, T) be transformation groups with the same phase group T. A homomorphism $f: X \to Y$ is a continuous mapping such that (xt)f = (xf)t $(x \in X, t \in T)$. A transformation group (X, T) is called a minimal set if $(xT)^- = cls[xt/t \in T] = X(x \in X)$. In this note it will be proved that given any abstract group T there exists a minimal set (M, T) with compact phase space M such that any minimal set (X, T) with compact X is a homomorphic image of (M, T). Furthermore this "universal minimal set" is unique up to an isomorphism, and given $x \in M$, $t \in T$ with $t \neq e$ then $xt \neq x$. For a more complete discussion of several notions involved above see [2] and [3].

DEFINITION 1. The β -compactification as a transformation group. Let T be a discrete group, let βT be the β -compactification of T, and let $t \in T$. Then the map $s \rightarrow st$ of T into βT is continuous and so may be extended to a map of βT into βT . Thus each element of T may be identified with a homeomorphism of βT onto βT . Under this identification $(\beta T, T)$ becomes a transformation group.

Henceforth all transformation groups (X, T) will be assumed to have compact phase spaces, X, and discrete phase group T.

LEMMA 1. Let (X, T) be a transformation group, let $x \in X$. Then there exists a homomorphism f mapping $(\beta T, T)$ onto $((xT)^-, T)$.

PROOF. The mapping $t \rightarrow xt$ $(t \in T)$ of T into X is uniformly continuous, since xT is totally bounded. Hence there exists a continuous function f mapping βT onto $(xT)^-$ with tf = xt $(t \in T)$. Hence (ts)f = (tf)s $(t, s \in T)$ and so by continuity (ys)f = (yf)s $(y \in \beta T, s \in T)$. The proof is completed.

COROLLARY 1. Let (X, T) be minimal, and let M be a minimal subset of βT . Then (X, T) is a homomorphic image of (M, T).

DEFINITION 2. Universal minimal set associated with a group T. A transformation group (M, T) will be called a universal minimal set associated with T if M is minimal and if any minimal set (X, T) is a homomorphic image of (M, T).

Received by the editors October 26, 1959.

¹ This research was supported by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command, under contract AF49(638)-569. Reproduction in whole or in part is permitted for any purpose of the United States Government.

Corollary 1 shows that any minimal subset of $(\beta T, T)$ is a universal minimal set associated with T.

In order to prove that all universal minimal sets associated with a given group T are isomorphic I must make use of the following theorem which is proved in [1, Lemma 5].

THEOREM 1. Let (X, T) be a transformation group, let (I, T) be the transformation group associated with a minimal right ideal I of the enveloping semigroup E(X, T), and let f be a homomorphism of I onto I. Then f is an isomorphism onto.

LEMMA 2. Let (M, T) be a universal minimal set, and let I be a minimal right ideal in E(M, T). Then (M, T) and (I, T) are isomorphic.

PROOF. Let $x \in M$. Then the map $\pi_x \colon I \to M$ such that $p\pi_x = xp(p \in I)$ is a homomorphism onto. Since (M, T) is universal and (I, T) is minimal, there exists a homomorphism f of (M, T) onto (I, T). Hence $\pi_x f$ is a homomorphism of (I, T) onto (I, T). By Theorem 1 this map is an isomorphism onto, whence π_x is one-one. The proof is completed.

COROLLARY 1. Let (M, T) be a universal minimal set and let f be a homomorphism of M into M. Then f is an isomorphism onto.

PROOF. The map f is onto since M is minimal. Now let I be a minimal right ideal in E(M, T) and let $x \in M$. Then by Lemma 2, $\pi_x f \pi_x^{-1}$ is a well defined homomorphism of (I, T) onto (I, T). By Theorem 1, $\pi_x f \pi_x^{-1}$ is one-one, hence so is f.

THEOREM 2. All universal minimal sets associated with the group T are isomorphic.

PROOF. Let (M, T) and (N, T) be universal minimal sets. Then there exist homomorphisms f, g of M onto N and N onto M respectively. Hence fg is a homomorphism of M onto M which by Corollary 1 to Lemma 2 must be one-one. Hence f is one-one. The proof is completed.

DEFINITION 3. Let (X, T) be a transformation group. The action of T on X is said to be *strongly effective* if given $x \in X$ and $t \in T$ with $t \neq e$, then $xt \neq x$.

In order to show that the action of T on its associated universal set is strongly effective I must make use of the identification of βT with the set of ultrafilters on T, see [4]. Let $\mathfrak U$ be an ultrafilter on T and $t \in T$. Then the image of $\mathfrak U$ under t is the ultrafilter $\mathfrak U t = [Ut/U \in \mathfrak U]$.

THEOREM 3. Let (M, T) be the universal minimal set associated with T. Then the action of T on M is strongly effective.

PROOF. Let $t \in T$ with $t \neq e$ and let \mathfrak{U} be an ultrafilter on T. I shall show that $\mathfrak{U}t \neq \mathfrak{U}$.

Let $\mathfrak{F} = [F/F \subset T \text{ and } Ft \cap F = \phi]$. Then $[e] \in \mathfrak{F}$ implies that $\mathfrak{F} \neq \phi$. Furthermore if \mathfrak{F} is ordered by inclusion, it is inductive. Let F be a maximal element of \mathfrak{F} .

Now let $x \in T$ and suppose $x \in Ft \cup F$. Then $G = F \cup \{x\}$ is not in \mathfrak{F} and so $Gt \cap G \neq \phi$; i.e. $(Ft \cup \{xt\}) \cap (F \cup \{x\}) \neq \phi$. Since $F \in \mathfrak{F}$, this means that $xt \in F$. Thus $T = F \cup Ft \cup Ft^{-1}$.

Since $\mathfrak U$ is an ultrafilter on T, one of the sets F, Ft, Ft^{-1} must be in $\mathfrak U$. If $\mathfrak U t$ were equal to $\mathfrak U$, then $\mathfrak U t^{-1}$ would also be equal to $\mathfrak U$. This would imply that as soon as one of the sets F, Ft, Ft^{-1} were in $\mathfrak U$ they would all be in $\mathfrak U$. This is impossible since $F \cap Ft = \phi$. The proof is completed.

Let B(T) be the set of functions on T to the unit interval provided with the topology of pointwise convergence. Let $f \in B(T)$ and $t \in T$. Then one may define the element ft of B(T) in two ways; (1) $s(ft) = (ts)f(s \in T)$ and (2) $s(ft) = (st^{-1})f(s \in T)$. In this way one obtains two transformation groups with phase group T. These will be denoted $B_1(T)$, $B_2(T)$.

THEOREM 4. Let t, $s \in T$ with $t \neq s$. Then there exist functions f, $g \in B(T)$ such that

- 1. $f(t) \neq f(s)$, $g(t) \neq g(s)$.
- 2. f is an almost periodic point of $B_1(T)$ and g is an almost periodic point of $B_2(T)$.
 - 3. The range of f = range of g = the two element set $\{0, 1\}$.

PROOF. Let $(M \cdot T)$ be the universal minimal set associated with T and let $x \in M$. By Theorem 3 $xt \neq xs$. Since M is totally disconnected [4], there exists an open-closed subset U of M such that $xt \in U$ and $xs \notin U$. Let h be the characteristic function of U and set rf = (xr)h $(r \in T)$. Then f clearly satisfies 1 and 3.

To show that f satisfies 2, let $\epsilon > 0$ and s_1, \dots, s_n be elements of T. Then

$$(f; s_1, \dots, s_n; \epsilon) = [u/u \in B(T) \text{ and } | s_i u - s_i f | < \epsilon i = 1, \dots, n]$$

is a typical neighborhood of f. Let α be an index of M such that $(a, b) \in \alpha$ implies $|ah-bh| < \epsilon$, and let β be an index on M such that $(a, b) \in \beta$ implies that $(as_i, bs_i) \in \alpha$ for $i=1, \dots, n$. Finally let $A = [r/r \in T \text{ and } (xr, x) \in \beta]$. Then A is a syndetic [3] subset of T, and

 $r \in A$ implies that $|s_i(fr) - s_i f| = |(rs_i)f - s_i f| = |(xrs_i)h - (xs_i)h|$ $< \epsilon, i = 1, \dots, n \text{ since } (xr, x) \in \beta. \text{ Consequently } fr \in (f; s_i, \dots, s_n; \epsilon)$ $(r \in A)$. This completes the proof for $B_1(T)$.

To obtain g, one replaces the minimal set M in the above argument by the universal minimal set associated with the group T^* opposite to T (i.e. T^* is T provided with the group operation "o" where $s \circ t = ts$ $(t, s \in T)$).

Theorem 4 states that the points of any group T may be separated by almost periodic points of B(T). This is in marked contrast to the situation which prevails if one demands that the points of T be separated by almost periodic functions in the sense of von Neumann. There exist groups T [5] on which the only almost periodic functions are the constants.

REFERENCES

- 1. Robert Ellis, A semigroup associated with a transformation group, Trans. Amer. Math. Soc. vol. 94 (1960) pp. 272-281.
- 2. Robert Ellis and W. H. Gottschalk, Homomorphisms of transformation groups, Trans. Amer. Math. Soc. vol. 94 (1960) pp. 258-271.
- 3. W. H. Gottschalk and G. A. Hedlund, *Topological dynamics*, Amer. Math. Soc. Colloquium Publications, vol. 36, 1955.
- 4. Pierre Samuel, Ultrafilters and compactification of uniform spaces, Trans. Amer. Math. Soc. vol. 64 (1948) pp. 100-132.
- 5. J. von Neumann, Almost periodic functions in a group. I, Trans. Amer. Math. Soc. vol. 36 (1934) pp. 445-492.

University of Pennsylvania