
ON GROUPS OF DIFFEOMORPHISMS
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I. We consider here the groups of homeomorphisms on Euclidean

w-space and the «-sphere Sn. Chiefly we will be concerned with the

question of whether or not these groups reduce in an homotopy sense

to the ordinary orthogonal group acting on these spaces. Such ques-

tions are intimately connected with the theory of fibre bundles in

which these spaces occur as fibres. We will restrict ourselves to the

case where the homeomorphisms are of class C1 and will topologize

the various groups taking account of the differentiability.

We first consider Euclidean »-space En. We denote by K the group

of all homeomorphisms / of £" such that / and /-1 are of class C

K becomes a topological group by demanding uniform convergence

of/ and its derivatives on compact sets,1 i.e. a typical neighborhood

of the identity function is given by

Vr.<= {gGK\\\g(x)-4 <

(1)

—- (x) - Ok
dXk

< í, ||*|| <r

i, k = 1, • • ■, n>

Clearly the orthogonal group, 0n, of En is imbedded in K and the

topology induced on 0„ is the usual topology. In fact any locally

compact or complete metric group which acts as a transformation

group of En so that each motion is of class C1 is imbedded in K (see

[l, p. 197]). With this topology on K we now show

Theorem I. On is a deformation retract of K.

First we will demonstrate a number of lemmas which lead to the

proof of Theorem I.

Lemma 1. Let K0= {gEK\g(0) =0}. Then K0 is a closed subgroup

of K and K decomposes topologically into EnXK0. Hence if On is a

deformation retract of K0, then 0n is a deformation retract of K.

Proof. With each x££n associate axEK, ax(y)=y+x. Clearly

x—><rx is topological. If fEK, consider /(0) =x0. Then o~-xJ is in K~0
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1 For details on this topology, see R. Thorn, Les singularités des applications

differenliables, Ann. Inst. Fourier, Grenoble vol. 6 (1956) pp. 43-87.
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and f=<Txg, gG-^o. Furthermore, the decomposition is unique. Indeed

if o-xg = <rvh then gh~1 = cy-x is a translation. Since g&-1G-£o, y = x,

g = h. That the topology on K is the topology of the product space is

easily established.

Now let

(. dxk J

H is then a closed, invariant subgroup and

Lemma 2. K0 decomposes topologically into G\(n, R)XH where

Gl(ra, R) is the group of non-singular matrices on En.

Proof. Consider the homomorphism <f>: K<¡—»Gl(w, R) defined by

4>(f) = ((dfi/dxk)(0)). <p is continuous on K0 since we have demanded

close partial derivatives. If aGGl(ra, R) then <p(a)=a. If/G-K^o con-

sider the element 0(/)-1/ under 4>. We have

W)-1/) = ¿OKO-1)^/) = <K/)~W) = i

the identity matrix, and <£(/)-1/ is in the kernel of <p which is clearly

H, and f=cp(f)g, geH. If ag = ßh, a, /3GG1(», R), g, h^H then
/3_1a = Ag_1 and since hg~1G.H, ß~1a = I and consequently a=ß and

g — h. Again the product topology of Ko can be shown to be the

product topology on Gl(w, R) and H.

Lemma 3. The group H is contractible to a point.

Proof. For 0<i<=o, denote by Lt the transformation Ltx = tx.

Then we define the homotopy <i>: HX [0, l]—»i? by

|W¿„     o<,S1,

1 \     I, t = 0.

We have $(/, 1) =/ and <!>(/, 0) = I, thus if $> is continuous, $ con-

tracts H to I. First we see that <ï> is continuous on HX [0, 1 ] since

on this set <3? amounts to a continuous system of inner automorphisms

and these are continuous since the group operations are continuous.

Now let f(E.H, we will show that i> is continuous at (/, 0). Suppose

we are given a neighborhood Vr¡( of / as given by (1), (we suppose

r>l). We must show that there exists a neighborhood, U, of / in H

anda5>0such that for gGU, t<ô,$(g, t)EVr,t. Now if hGH then

by the theorem of the mean we have

hi(x) = Xi + 22 Ci(h; x)xk
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and c\(h; x) tends to 0 with x, (in fact ch(h; x) = (dhi/dxk)(6kx)

— 5*, 0<6[<l). Furthermore, denoting by h' the transformation

i>(Ä, í),í>0we have (dh'i/dxj)(x) = (dhi/dx¡)(tx). Then we first select

a neighborhood U\ of / so that for

seuu
dgi 1 \

0Xk

Ml
dxk

(x) <
2rn

Since (dfi/dxk)(0) = hk we can choose 77>0 so that ||x|| <rj implies

I (dfi/dxk)(x)-ôit\ <e/2rn. Choose Si>0 so that for 0<i<5i, ||x|| ^r
we have ||íx[| <r¡. Under these conditions we obtain for gEUi,

0<t<8lt IWIáf

-(x) - 5i
ox* dxk

\?*L
\dXk

e

m

(tx) — 8k

(ix)
V<
dxk

(tx) +
dfi i
-(tx) — h
dxk

Since the inequality holds for all x for which ||x|| ^r it also holds for

6x, O<0<1,

<e/rn. Then

x  ár and we conclude that for gEUi,   \ct(g; tx)\

I gi(x) - Xi\   = X} Ciig ; tx)xj
3-1

^ X) I ¿(g; tx) I I Xj I
7-1

< e.

Hence $ maps í/iX [0, 5i) into Fr,e and "i> is continuous at (/, 0)

and the lemma is proved.

Proof of Theorem I. It follows from Lemmas 1, 2, 3 that

Ä" = £nXGl(w, R)XH as a topological space. Now Gl(w, R) can be

topologically decomposed as the product of the orthogonal group

and a euclidean space. Then K is topologically the product OnXA

where A is a contractible space, and Theorem I follows readily.

Corollary I. Let (B= [B, p, X, En, K~) be a fibre bundle in the sense

of Steenrod, [2, p. 8], with fibre En, group K and base space X a locally

finite polyhedra. Then (B is equivalent in K to a bundle with group On.
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Proof. According to [2, p. 36] it suffices to show that the bundle

(&' associated to (B with fibre K/On has a cross-section. It follows

from Theorem I that Ui(K/On)=0, i^O. Since X is a locally finite

polyhedra it follows in the usual way that we can define a cross-

section inductively on the ¿-dimensional skeleton of X and obtain the

corollary.

II. We consider now the sphere, Sn, and the group K of homeomor-

phisms / of S" such that / and f~l are of class Cl in the usual differ-

entiable structure of Sn. We suppose S" covered by two coordinate

neighborhoods, Ui and U2, Ui = Sn\{x0}, U2 = Sn\{ — x0}. If (x) are

the coordinates on Ui and (y) the coordinates on Ui we take as

coordinate transformations

Xi

K is topologized with the usual ^-topology (cf. the reference in

footnote 1).

Theorem II. Jf 0„+i is the orthgonal group then i*: Uk(0„+i)—>Uk(K)

is an isomorphism into where i* is induced by the injection i: On+i—>K.

The proof follows

Lemma 4. Let K0 denote the subgroup of K which holds xo fixed. Then

i: 0„—»JTo induces an isomorphism i* of IL(0„) into Hk(K0) for each k.2

Proof. We suppose x0 to have coordinates (0, ■ • • , 0) in XJ\. De-

fine the continuous homomorphism <p: Ko~^>G\(n, R) by

\dxk       /

For each g, <p(g) can be expressed uniquely and continuously as the

product of an orthogonal matrix ip(g) and a triangular matrix ir(g),

</>(&) =ip(g)T'(g). Theny^: K0—*On and for AGO„, \p(h) =A so that \p is a

retraction of Ko onto On. The lemma then follows immediately.

Proof of Theorem II. It is easily seen that the map /: K—»S„,

f(g) — g(xo) is open (since/ is open on On+i) and consequently that

K/Ko is canonically homeomorphic to Sn. Furthermore, the local

cross-section of On+\ over Sn provides a local cross-section for K over

* On can be imbedded in Ko so that its action is that of 0„ on the coordinate

neighborhood Ui.
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Sn, and K is then a fibre bundle over S". Consequently we have the

following commutative diagram of exact sequences

-► Uk(On) -> n,(o„+1) -> n*(s») -» n*_i(o») -» n*_i(cWi) -» • • •

i i*       i i*        i y*       i i* 11*

->Uk(K0) -* MK) -» n*(5") -*n*_i(ro) -» n*_i(£) -» • • •

where7* is the identity. It is easily seen that Ker(i*: Uk(On+{)—>Hk(K))

is the image under II*(0B)—*IIfc(0,,+i) of Ker(¿*: Ü^O,,)—TL(ATo)).

Since this last kernel is 0 the theorem follows.
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A NOTE ON GAUSS' FIRST PROOF OF THE QUADRATIC
RECIPROCITY THEOREM

L. CARLITZ

We assume that the reader is familiar with Mathews' exposition

[l, pp. 45-50] of the inductive proof of the reciprocity theorem.

There are three main cases:

I. pRq,
II. pNq, q = 3 (mod 4),
III. pNq, q=i (mod 4).

In I we have e2 — p = qf, in II we have e2-\-p = qf. In III we have

first the lemma which asserts the existence of a prime p' <q such

that qNp'. This implies p'Nq, so that pp'Rq and so e2 — pp' = qf. In

each of the cases I and II it is necessary to treat two sub-cases; in

case III there are four sub-cases. Thus in all there are eight cases to

consider.

We should like to point out in this note that it is possible to handle

all cases simultaneously by introducing a little notation. To begin

with, we define
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