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1. Introduction. We present a theory of continued function expan-

sions of numbers which contains the generalized continued fractions

of B. H. Bissinger [l] and the generalized decimal representations of

C. J. Everett [2]. The latter used the following algorithm for repre-

senting numbers as sequences of integers: for any 7^0 let 70 = 7,

7n+i=/"~1(7n — an), where an= [yn] and/is strictly increasing and con-

tinuous from [O, p] onto [O, l], p an integer. We generalize this, in

particular, by admitting a wider class of functions than those of the

form f~l(x — «). O. W. Rechard [3] gave a necessary and sufficient

condition that the correspondence between numbers and sequences

resulting from Everett's algorithm be 1-1. This condition appears in

our theory as a simple functional relation similar to one considered

by Schreier and Ulam [4].

2. The algorithm. The correspondence between numbers and se-

quences which we are going to describe depends on a collection of

intervals and on functions defined on those intervals. More precisely

Definition. ¿4« algorithm frame, A, consists of the following: an

interval R; a subset P of the integers containing at least two integers;

a partition of R into disjoint intervals In, nEP', a subset Po of P

containing at least two integers such that -T = U„g/>0 In is an interval;

intervals Mn, nEP, homeomorphic to each other such that MnEIn

and In-Mn consists of at most one point; and an interval M homeo-

morphic to each Mn such that U„gp0 MnEMEI-

It follows from the above definition that if \Mn, nEP} is part of

an algorithm frame then either all the Mn are open intervals or all

are closed on one end, not necessarily the same, because not all the

/„ can be closed and the M„ are homeomorphic to each other. Also,

if any interval is infinite at some end it is taken to be open at that end.

Definition. An algorithm basis consists of an algorithm frame A

and a collection of homeomorphisms hn, nEP, mapping Mn onto M.

We usually identify an algorithm basis by the couple (A, h„).

Corresponding to any algorithm basis we have the following

algorithm for relating points in R to sequences (finite or infinite) of

integers:
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hetxo<E.R-

{a(0) is determined by the requirement that x0£Jo(o).}

o(0):

o(l):

a(k):

If XoQMa(o), stop, and represent x0 by the sequence of

one element }a(0)}.

(Since xoG-Ma(o) we can let Xi = ha(o)(xo). Then a(l)"'

is determined by the requirement that Xi£Ja(i).

Furthermore, a(l)£Po since XiGiUCJ-

If XiG-^Ja(i), stop, and represent Xo by the sequence of

two elements {a(0), a(i)}.

(Since xjt-i<E.M»c*-i) we can let ** = Äa<*_i)(*»_i).l

■í Then a(k) is determined by the requirement that >

|xt£Jo<*), and a(k)£.Po- )

{if xkÇ£Ma(k), stop, and represent x0 by {a(O), • • • ,a(k)}.}

This algorithm contains the expansions considered by Bissinger

and Everett. Let AB be the following algorithm basis:

R=[0, co),  P= {0,1,2,.-.},  P„= {1,2, ■ ■ • },  /„= k«+l),

Mn=(n,n+V),   J=[l, oo),    M=(l, «.),

and let hn(x) =f~1(x — n) for #£(«, « + 1) where / is a continuous

strictly decreasing function mapping [l, oo) onto (0, l]. This con-

tains Bissinger's expansions. Everett's expansions come from the

algorithm basis AE given by:

R = / = M = [0, p),       /„ = Mn= [n, n + 1),

P = Po= {0, 1, ■ • -,p- 1},

and A„(x) =f~1(x — n), x(E:[n, n + i) where/ is continuous and strictly

increasing from [0, p] onto [O, l].

3. 1-1 Correspondence. Given an algorithm basis (A, hn), the

algorithm defines a function h from R into the space C of finite or

infinite sequences of integers c= {c(0), c(l), • • • } as follows: let as
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yield c under the algorithm, then h(x) =c. Let E be the set of all such

functions. In general we will use the convention that if gEE then

the homeomorphisms in its algorithm basis are g„.

Definition. Let (A, hn), (B, gn) be algorithm bases. The cor-

responding functions h and gEE are said to be equivalent, written

Ä<~g, if A and B are identical and if hn has the same sense as g„ for

each «. (By this we mean that if h„ is monotonie increasing so is gn and

if hn. is monotonie decreasing so is g„. This is not meant to imply that

the sense of hn is independent of «.)

Denote by C(h) the range of h for hEE.

The following theorems characterize the equivalent 1-1 functions

in E:

Theorem 1. If h~g and his 1-1 onto C(h) then C(h)EC(g).

Corollary 1. If h~g, a finite sequence is in C(h) if and only if it

is in C(g).

Corollary 2. If g is 1-1, C(h) = C(g).

Notation. A sequence of functions hg • ■ • k always means the

composite function h(g( ■ ■ ■ (k) ■ ■ ■ )).

Theorem 2. Let g be 1-1 from R onto C(g) and let h have the same

algorithm frame as g. Then h~g and h is 1-1 from R onto C(g) if and

only if there exists an increasing homeomorphism F from R onto R,

which also maps Mn onto MHfor all «, such that hñ1 = F~1gñ1F.

The following theorems are an application of Theorem 2 to bases

AB and AE, respectively.

Theorem 3. Let (A, hn) be an algorithm basis of the form AB. Let

hn(x) =h~l(x — n). Then h is 1-1 if and only if there exists an increasing

homeomorphism F mapping [0, «>) onto itself such that F(x)=n

+ F(x-n) for xE[n, n + l) and h~l(r) = F~l{%/'F(t)) for all tE(0, l].

Theorem 4. Let (A, hn) be an algorithm basis of the form A E. Let

hn(x) = h~1(x — n). Then h is 1-1 if and only if there exists an increasing

homeomorphism F mapping [0, p] onto itself such that F(x)=n

+F(x-n)for xE [«, « + 1) and Ît1(t)=F-1(P-F(t)) for allrE [0, l].

Rechard's condition is that h is 1-1 if and only if there exists an

increasing homeomorphism G mapping [O, l] onto itself such that

h(y)=G~1((n-\-G(y — n))/p). It is easily verified that this is equiva-

lent to Theorem 4 (given G, set F(y) =n-\-G(y — n), yE[n, « + 1), and

given F set G(t) = F(t), tE[0, l]).

Proof of Theorem 1.
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Lemma. Let (A, /„) be any algorithm basis and let c be any infinite

sequence {c(0), c(\), • • • } such that c(0)£P, c(t)G?0 for i>0. Let

Fffm ' ■ •few(M)mcfm ' • • f7(t-i)(Mcm)- Then f(x) = c if and only
if xGn0°°p*.

Proof of Lemma. Fk consists exactly of those points y which cor-

respond, under /, to sequences with at least k + 2 entries, the first

k + l oí which are c(0), • • ■ , c(k), and the lemma follows immedi-

ately from this fact. Proceeding with the theorem, let h be 1-1

onto C(h), h'-^g, and let h(x)=c. If c={c(0)}, then g(x)=c. If

c={c(0), • • • , c(k)), k>0, then x = hj¿) ■ ■ ■ h^-^y) where

yGJe(4) — Mem (note that in the definition of algorithm frame it was

assumed that In — M„ consists of at most one point; the reason for this

is apparent, for if there were more than one point h could not be

1-1). Then if w - g~¿} ■ ■ ■ gë(l)(y), g(w) = c. He is infinite,
c={c(0),c(l), • • • },let

3k = Ac(o) • • • hcm(M) = hcm • • • hC(k-i)(Mcm),

Gk = gem • ■ ■ gem(M) = gcm • • • g^k-ii(Mem),

and

fk =   ge{0)   ■   •   ■ ge(k)hc{k)   •  •  • hc(0).

Clearly, JJ4+i C JJt, Gk+i C Gk, Gk = rk(Hk), and by the lemma,

x = ÍV JJfc. Furthermore, since A/~g, there are at most an even num-

ber of decreasing homeomorphisms in the composition of rk, therefore

each rk is strictly increasing from the interval Hk onto the interval

Gk. Also,

rk(Hk+i) = gc(o) ■ ■ ■ gem hC{k) ■ ■ • AC(o)[AC(o) • • ■ hcm(MC(.k+i))\ = Gk+i.

It follows from these facts that Do™ Gk is nonempty. To show this we

consider three cases.

Case 1. Each Hk is open. Then each Gk is open. Let Hk=(ak, bk),

Gk= (ak, ßk). Since Dq™ Hk consists of the point x, we must have that

lim ak = x>ak for all k and lim bk = x<bk for all k (this also means

that if bo= °° some bk must be finite, and similarly, if Oo= — °° , some

ak is finite). Then there must be infinitely many indices k for which

ak<ak+1. Let ak<a<ak+1. Then ak<rk(a) <rk(ak+i) =ak+i, and there-

fore if a = limaj;, a>ak for all k. By the same kind of reasoning if

/3 = lim ßk, ß<ßk for all k. Since a aß, no°° Gk= [a, ß], nonempty.

Case 2. Each Hk is closed on one end and ko exists such that Hk

is closed on the same end as JJt0, say the left for k^ko. The Gk must

have the same property. Let Hk= [ak, bk), Gk= [ak, ßk), k^k0. By the
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same reasoning as in Case 1 if /3 = lim/3/t, ß<ßk for all k, therefore

H" G/b = n™ [ak, ß] which is nonempty.

Case 3. Each Hk is closed on one end but no ko as in Case 2 exists.

Then it is easily seen that H" Gk = (!„* Gk which is nonempty. Since

in all cases n¿° Gk is nonempty, there exists y ER such that g(y) =c,

which completes the proof.

The proof of Corollary 1 is essentially contained in the analysis of

finite sequences given above. Corollary 2 is immediate.

Proof of Theorem 2. Let A~g and both be 1-1 onto C(h) = C(g).

Let xER- The following function F is 1-1 from R onto R: if h(x) =c

then y = F(x) if g(y)=c. Since each interval Mn consists exactly of

those points which correspond under the algorithm to sequences

containing at least two entries, the first of which is «, F maps Mn

onto Mn. If h(x)= {c(0)j, then F(x)=x so F maps /„ onto J„. To

see that F is strictly increasing, let x<x, h(x) =c, h(x) =d. Define the

length / of c as follows: if c= |c(0), • ■ • , c(k)}, then l — k, and if c

is infinite /= °o. Let I be the length of d. There are two cases to con-

sider.

Case 1. There exists an integer k^n\in(l, I) such that c(i)=d(i),

i<k, and c(k) 7ád(k). If k = 0, since xEIcw, xEIam, we must have

that 7c(o) is to the left of Idm- Since F(x)EIC(.o), F(x)EIdio), F(x)

<F(x). If k>0 then we can write

x = hcm ■ ■ ■ hC(k-i)(xk) for some xk E Ic»h

x = hcm • ■ ■ hC(k-i)(xk) for some xk E /«j(*>,

P{x) = gem • ■ ■ gc<.k-»(yk) for some yk E /,(*),

F(x) = gc(o) • • • gc(*-i)(^*) for some % E h«).

Let hjifi) • • • &c7t-i) be increasing. Then Xk<xk, IcW is to the left of

Id(k), yk<% and therefore F(x)<F(x) since g~i0) ■ ■ ■ g^i-i) is also

increasing. If h^0\ ■ ■ ■ h^l-i) is decreasing then xk>xk, Icm is to the

right of Idlk), yk>jk and F(x) <F(x) since g~i0\ ■ • ■ g7{l-i) is also de-

creasing.

Case 2. min(¿, Î) is finite and c(i)=d(i), ¿ = min(Z, t). For definite-

ness let l<l. If 1 = 0 then xEIc«» — McW. Since xEMcm, x is the left

end point of /f(o). Then F(x)=x<F(x) because F(x)EMC{0)- If l>0

we can write

x = AC(0) • • • hC(i-i)(xi), xi E Ic(i) — MC(u,

x = Äc(0) • • ■ hC(i-i)(xi), xi E MC(i),

H«) = gem • • • gcd-n(xi),

F(x) = g„(o) • • • gca-iÂSÙ, Si S Mcit).
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If Ac"(o) ■ ■ • he~(l-\) is increasing, xi<x¡, therefore x¡ is the left end-

point of IC(i), therefore x¡<y¡ and F(x) <F(x). The proof is straight-

forward if he~{o\ ■ • • hctJ-D is decreasing. Thus F is strictly increas-

ing and is therefore a homeomorphism of R onto R. Let xGM„.

Then x = h~1(r) and F(x)=g~1(s). But s = F(r) (this follows from the

fact that if h(x) = \n, au a2, • ■ • } and x = h^(r) then h(r)

= {au a2, ■ ■ • }) therefore F(x)=g;\F(hn(x))) or h~l = F-'g^F.

Conversely let hñ1 = F~~lgñ1F where F is an increasing homeomor-

phism from R onto R taking Mn onto M„. Let y = F(x). Then h(x) =c

if and only if g(y) =c, which completes the proof.

Proof of Theorem 3 and Theorem 4. Theorem 3 is obtained

simply by applying Theorem 2 to this basis, using the inverse func-

tional relation hn = F~1gnF and choosing gn(x) = l/(x — n) (the cor-

responding g is the ordinary continued fraction algorithm which is

well-known to be 1-1). Theorem 4 is obtained by taking gn(x)

= p-(x — n) (the corresponding g is the ordinary decimal expansion

to the base p, which is 1-1). In both cases the functional relation

implies that F(x)—n is a function of x — n only and therefore F(x)

— n = F(x — n) for xG [n, n + i).

Finally, let (A, hn) be an algorithm basis giving rise to the function

hÇzE and suppose h is 1-1. If xQR and c is an infinite sequence such

that h(x)=c, there are two ways of interpreting the continued func-

tion expansion of x :

x = hC(o)(hC(i)( •■•)).

The  first  is  that for every  k^O,   x = hc~¿) ■ ■ ■ he¿(y)   where   h(y)

— \c(k + l), ■ • • }. The second is that x = limk^al h^a\ ■ ■ ■ Ac7¿(y) for

all y<E.M, which follows from the fact that x = f1¿° Hk.
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