THE NONUNIQUENESS OF IRREDUCIBLE CONSTITUENTS
OF INTEGRAL GROUP REPRESENTATIONS!

IRVING REINER

Let Z denote the ring of rational integers, Q the rational field. As
is well-known, the Z-representations of a finite group G can be classi-
fied either according to Q-equivalence or according to Z-equivalence.
Thus, two Z-representations T, U of G are Q-equivalent (T~qU) if
there exists a nonsingular rational matrix P such that

¢Y) U(p) = P'T(9) P, gEG.

On the other hand, we write T~z U if (1) holds for some unimodular?
matrix P.
If a representation T is equivalent to a “reduced” representation

T«(g) * )
- b G’
( 0 T ¢

we say that T is reducible. Conceivably we must distinguish between
Q- and Z-reducibility of a Z-representation. This difficulty does not
in fact arise, because of the following theorem due to Zassenhaus [3].
(A) An integral representation is Q-reducible if and only if it is
Z-reducible.
It is well-known that any given Q-representation T of G is Q-
equivalent to a “completely reduced” representation

T, 0
©) o
0 T
in which the T; are irreducible. The Jordan-Hélder Theorem on
modules asserts
(B) The irreducible representations T3, - - -, T} (often referred to
as the irreducible constituents of T) are uniquely determined up to
Q-equivalence and order of occurrence.
As an analogue of this, Zassenhaus [3] and Diederichsen [1]

proved
(C) If the Z-representation T is Q-equivalent to a completely re-
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? A square matrix with integral entries and determinant 1 is called unimodular.
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duced representation (2), then also T is Z-equivalent to a reduced
Z-representation

U, ) * ]
0 U ]
in which
U; ~oT, 15i=k
We may refer to Uy, - - -, Ui as a set of irreducible Z-constituents

of T. From (B) it follows that they are unique up to Q-equivalence
and order of occurrence. Diederichsen [1] (see also Maranda [2])
gave the following example to show that the irreducible Z-constitu-
ents were not necessarily unique up to Z-equivalence and order of
occurrence.

Let

® G = {a, b: a* = b2 = (ab)? = 1}.
Then G is the group of symmetries of the square, and (G: 1) =8. Set

0 (D me(: m (20
(5) Ti(a) = A, Ti(b) = B;, i=1,2,

Then T; and T are irreducible Z-representations of G which are
Q-equivalent but not Z-equivalent. However, for suitable choice of
integral Ay, A,, Diederichsen showed that

(0 2~ 7
o 1/ "\ 1)

Diederichsen attempted to show that this difficulty is due to the
repetition of constituents, and asserted the following:

(D) Let T be an integral representation of some finite group, and
suppose that

U, *
Tr~z|
0 U
where for 75£j, no irreducible constituent of U; is Q-equivalent to

any irreducible constituent of U;. Then Uy, - - -, Uy are unique up
to Z-equivalence and order of occurrence.
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We shall show here that this statement is false.? If it were true,
it would imply that if T is a Z-representation no two of whose ir-
reducible constituents are Q-equivalent, then the irreducible Z-con-
stituents of T are unique up to Z-equivalence and order of occurrence.
We shall give a counterexample to show that this is not the case.

Keep the notation of equations (3)—(5). Let U be the Z-representa-
tion of G defined by

1 1 B, 1
1 1.

so that U has irreducible Z-constituents T; and 1. Set

1 0 1 0 1 1
S=|-1-1-1}, St=]—-1-1 0].
2 1 1 1 -1-1

Then we find that S"1US=V, where

)’ Ve = (—L OB:)’

Thus, V has irreducible Z-constituents 1, 7. Since U~zV, we have
our counterexample.

Keeping the notation and hypotheses of (D), the correct version
(proved by Diederichsen) is

(D’) Once the order of occurrence of the U; is fixed, then they are
unique up to Z-equivalence. In other words, if

U, * Vi *

o - (H

0 U 0 Vi
are a pair of Z-equivalent Z-representations of a finite group such that
Ui~ qV;, 1<i5k
and such that for 753, no irreducible constituent of U; is Q-equivalent

to any irreducible constituent of Uj, then in fact U;~zV,, 1Zi<k.

3 The flaw in Diederichsen’s argument is this: he shows that the order of occur-
rence of the irreducible constituents may be changed at will by unimodular trans-
formation. Unfortunately, he overlooks the fact that such transformations may
change the integral classes of the constituents which are involved.
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A THEOREM ON FACTORIZABLE GROUPS!
WALTER FEIT

A group G is said to be factorizable if it contains proper subgroups
H, K with the property that G=HK. Several results are known which
state that G is not simple if H and K satisfy suitable assumptions.
The following theorem and its corollaries are of a similar nature but
apply only to groups of odd order. The proof is based on a theorem of
H. Wielandt (see [2]) which generalized earlier results of W. Burn-
side and I. Schur.

THEOREM. Let G be a group of odd order and let M be a maximal
subgroup of G. Suppose that A is an abelian subgroup of G, which has
at least one cyclic Sylow subgroup, such that G=AM. Then either G
has prime order or G contains a proper normal subgroup N which is
contained in either A or in M.

PRrOOF. Assume that no proper normal subgroup of G is contained
in M. Suppose first that D=ANxMx~15 {1}, for some element x
in G. Since 4 is abelian and since every subgroup of G conjugate to
M is of the form y My~ for some element y in 4, it follows that D is
contained in every subgroup conjugate to M. Hence the intersection
of all subgroups conjugate to M is a proper normal subgroup of G
which is contained in M. This contradicts our assumption. Hence
ANxMx—1= {1} for every element x in G.

Let m be the permutation representation of G induced by the sub-
group M. As the kernel of 7 is contained in M, it follows from the
assumptions that 7 is faithful. As M is a maximal subgroup of G,
7(G) is a primitive group of permutations. Since 4 intersects no
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