
THE NONUNIQUENESS OF IRREDUCIBLE CONSTITUENTS
OF INTEGRAL GROUP REPRESENTATIONS1

IRVING REINER

Let Z denote the ring of rational integers, Q the rational field. As

is well-known, the Z-representations of a finite group G can be classi-

fied either according to Q-equivalence or according to Z-equivalence.

Thus, two Z-representations T, U of G are Q-equivalent (T^qU) if

there exists a nonsingular rational matrix P such that

(1) U(g) = P~1T(g)P, g £ G.

On the other hand, we write T~zU if (1) holds for some unimodular2

matrix P.

If a representation T is equivalent to a "reduced" representation

*

T2(g),'"Ho    fJ' seG'

we say that T is reducible. Conceivably we must distinguish between

Q- and Z-reducibility of a Z-representation. This difficulty does not

in fact arise, because of the following theorem due to Zassenhaus [3].

(A) An integral representation is (^-reducible if and only if it is

Z-reducible.

It is well-known that any given Ç-representation T of G is Q-

equivalent to a "completely reduced" representation

Ti        0

(2)

.0       ' Tk

in which the T, are irreducible. The Jordan-Holder Theorem on

modules asserts

(B) The irreducible representations T%, ■ ■ • , Tk (often referred to

as the irreducible constituents of T) are uniquely determined up to

Q-equivalence and order of occurrence.

As an analogue of this, Zassenhaus [3] and Diederichsen [l]

proved

(C) If the Z-representation T is Ç-equivalent to a completely re-
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2 A square matrix with integral entries and determinant ± 1 is called unimodular.

655



656 IRVING REINER [August

duced representation (2), then also T is Z-equivalent to a reduced

Z-representation

Ui

lo uk

in which

Uí~qTí, 1 g i g k.

We may refer to Ui, ■ • ■ , Uk as a set of irreducible Z-constituents

of T. From (B) it follows that they are unique up to Q-equivalence

and order of occurrence. Diederichsen [l] (see also Maranda [2])

gave the following example to show that the irreducible Z-constitu-

ents were not necessarily unique up to Z-equivalence and order of

occurrence.

Let

(3) G = {a, b:a* = b2 = (ab)2 = l}.

Then G is the group of symmetries of the square, and (G: 1) =8. Set

(4)

(5)

M-io)'*1 = (io);   M-io)'*2 = (o-i);
Ti(a) = Ai,        Ti(b) = Bi,       i = 1, 2.

Then T\ and T2 are irreducible Z-representations of G which are

Q-equivalent but not Z-equivalent. However, for suitable choice of

integral Ai, A2, Diederichsen showed that

/Ti   Ai\       /r2   A2\

\0      Ti) ~Z \0      TV

Diederichsen attempted to show that this difficulty is due to the

repetition of constituents, and asserted the following:

(D) Let T be an integral representation of some finite group, and

suppose that
'Ui        *

10 uk)

where for i^j, no irreducible constituent of Ui is Ç-equivalent to

any irreducible constituent of U¡. Then Ui, ■ ■ ■ , Uk are unique up

to Z-equivalence and order of occurrence.
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We shall show here that this statement is false.3 If it were true,

it would imply that if T is a Z-representation no two of whose ir-

reducible constituents are Q-equivalent, then the irreducible Z-con-

stituents of T are unique up to Z-equivalence and order of occurrence.

We shall give a counterexample to show that this is not the case.

Keep the notation of equations (3)-(5). Let U be the Z-representa-

tion of G defined by

(6) U(a) =
Ai

U(b) =
Bi

1  1

1

1

so that U has irreducible Z-constituents 7\ and 1. Set

1 0      1'

-1  -1  -1   ,        S"1

2 1      1.

Then we find that S~1US= V, where

1110

0 1      1

-1  -1      0

1 -1   -1

(7)
/   1   II 0\ /   1   10 1\

FW - (- tir>   m = (- fir)-
Thus, V has irreducible Z-constituents 1, 7Y Since U~zV, we have

our counterexample.

Keeping the notation and hypotheses of (D), the correct version

(proved by Diederichsen) is

(D') Once the order of occurrence of the Ui is fixed, then they are

unique up to Z-equivalence. In other words, if

Ui

0 U,k)

Vi

0

are a pair of Z-equivalent Z-representations of a finite group such that

Üi ~ QVi, l á • g *,

and such that for i^j, no irreducible constituent of í/¿ is Q-equivalent

to any irreducible constituent of £/,-, then in fact í/¿~zF,-, 1 g¿g¿.

* The flaw in Diederichsen's argument is this: he shows that the order of occur-

rence of the irreducible constituents may be changed at will by unimodular trans-

formation. Unfortunately, he overlooks the fact that such transformations may

change the integral classes of the constituents which are involved.
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A THEOREM ON FACTORIZABLE GROUPS1

WALTER FEIT

A group G is said to be factorizable if it contains proper subgroups

H, K with the property that G = HK. Several results are known which

state that G is not simple if H and K satisfy suitable assumptions.

The following theorem and its corollaries are of a similar nature but

apply only to groups of odd order. The proof is based on a theorem of

H. Wielandt (see [2]) which generalized earlier results of W. Burn-

side and I. Schur.

Theorem. Let G be a group of odd order and let M be a maximal

subgroup of G. Suppose that A is an abelian subgroup of G, which has

at least one cyclic Sylow subgroup, such that G = AM. Then either G

has prime order or G contains a proper normal subgroup N which is

contained in either A or in M.

Proof. Assume that no proper normal subgroup of G is contained

in M. Suppose first that D = Ar\xMx~19¿{í}, for some element x

in G. Since A is abelian and since every subgroup of G conjugate to

M is of the form yMy~l for some element y in A, it follows that D is

contained in every subgroup conjugate to M. Hence the intersection

of all subgroups conjugate to M is a proper normal subgroup of G

which is contained in M. This contradicts our assumption. Hence

AC\xMx~r= {1} for every element x in G.

Let it be the permutation representation of G induced by the sub-

group M. As the kernel of it is contained in M, it follows from the

assumptions that ir is faithful. As M is a maximal subgroup of G,

ir(G) is a primitive group of permutations. Since A  intersects no
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