tinct classes. According to our bound there are at least two more such splittings obtainable in this way.

## References

- 1. D. H. Lehmer, The Tarry-Escott problem, Scripta Math. vol. 13 (1947) pp. 37-41.
- 2. J. B. Roberts, A curious sequence of signs, Amer. Math. Monthly vol. 64 (1957) pp. 317-322.
- 3. ——, A new proof of a theorem of Lehmer, Canad. J. Math. vol. 10 (1958) pp. 191-194.
- 4. E. M. Wright, Equal sums of like powers, Edinburgh Math. Proc. vol. 8 (1949) pp. 138-142.
- 5. ——, Equal sums of like powers, Bull. Amer. Math. Soc. vol. 54 (1948) pp. 755-757.
- 6. ——, Prouhet's 1851 solution of the Tarry-Escott problem of 1910, Amer. Math. Monthly vol. 66 (1959) pp. 199-201.

REED COLLEGE

## A DETERMINANT CONNECTED WITH FERMAT'S LAST THEOREM

L. CARLITZ<sup>1</sup>

Put

$$\Delta_{n} = \begin{vmatrix} 1 & C_{n,1} & C_{n,2} & \cdots & C_{n,n-1} \\ C_{n,n-1} & 1 & C_{n,1} & \cdots & C_{n,n-2} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ C_{n,1} & C_{n,2} & C_{n,2} & \cdots & 1 \end{vmatrix},$$

where the  $C_{n,r}$  are binomial coefficients. Bachmann showed that if

$$(1) x^p + y^p + z^p = 0 (p \nmid xyz)$$

is solvable then  $\Delta_{p-1} \equiv 0 \pmod{p^3}$ . However Lubelski showed that for  $p \geq 7$ ,  $\Delta_{p-1}$  is divisible by  $p^3$ , while E. Lehmer proved that  $\Delta_{p-1}$  is divisible by  $p^{p-2}q_2$ , where  $q_2 = (2^{p-1} - 1)/p$ ; also  $\Delta_n = 0$  if and only if n = 6k. For references see [2].

The writer [1] has determined the residue of  $\Delta_{p-1}$  (mod  $p^{p-1}$ ). The result is that

Received by the editors December 1, 1959.

<sup>&</sup>lt;sup>1</sup> Research supported by National Science Foundation, Grant G-9425.

$$\Delta_{p-1} \equiv p^{p-2} \prod_{a=1}^{p-2} \left\{ (1+a)q(1+a) - aq(a) \right\} \pmod{p^{p-1}},$$

where

$$q(a)=\frac{a^{p-1}-1}{b},$$

or if we prefer,

(2) 
$$\Delta_{p-1} \equiv \prod_{a=1}^{p-2} ((a+1)^p - a^p - 1) \pmod{p^{p-1}}.$$

Now it is known (see [3, p. 564] for references) that when (1) is solvable

$$q(r) \equiv 0 \pmod{p}$$

for all primes  $r \le 43$  and therefore for all integral  $r \le 46$ . Mrs. Lehmer noted that it follows from

$$q(2) \equiv 0 \pmod{p}$$

that if (1) is solvable then  $\Delta_{p-1}$  is divisible by  $p^{p-1}$ . In view of (2) it seems plausible that when (1) is solvable  $\Delta_{p-1}$  is divisible by a considerably higher power of p; however since the modulus in (2) is only  $p^{p-1}$  such a result cannot be inferred without further proof.

Put  $C_r = C_{p-1,r}$  for  $0 \le r \le p-1$  and  $C_r = C_s$  for  $r \equiv s \pmod{p-1}$ . Then

$$\Delta_{p-1} = |C_{s-r}| \qquad (r, s = 1, \cdots, p-1).$$

Let e be an arbitrary non-negative integer and consider the determinant

$$D_e = |s^{per}| \qquad (r, s = 1, \dots, p-1).$$

Then

$$D_e \equiv D_0 \pmod{p}$$
;

since

$$D_0 = (p-1)! \prod_{1 \le r < s \le p-1} (r-s),$$

it follows that

$$D_{\epsilon} \not\equiv 0 \pmod{p}$$
.

Similarly the determinant

$$D'_{s} = |r^{-pe_{s}}| \qquad (r, s = 1, \cdots, p-1)$$

is a rational number with both numerator and denominator prime to p. Consequently

$$\Delta_{p-1}' = D_{\epsilon}' \Delta_{p-1} D_{\epsilon}$$

and  $\Delta_{p-1}$  are divisible by the same power of p.

We have

(4) 
$$D'_{\epsilon} \Delta_{p-1} D_{\epsilon} = |A_{r\epsilon}| \quad (r, s = 1, \dots, p-1).$$

where

$$A_{re} = \sum_{j,k=1}^{p-1} r^{-pej} C_{k-j} s^{pek}$$

$$= \sum_{t=1}^{p-1} C_t \sum_{k-j=t} r^{-pej} s^{pek}$$

$$\equiv \sum_{t=1}^{p-1} C_t \sum_{j=1}^{p-1} (r^{-pe} s^{pe})^j s^{pet} \pmod{p^{e+1}}.$$

Since

$$\sum_{i=1}^{p-1} (r^{-p^{o}} s^{p^{o}})^{j} \equiv (p-1) \delta_{re} \pmod{p^{o+1}},$$

where  $\delta_{rs}$  is the Kronecker delta, we get

$$A_{re} \equiv (p-1)\delta_{re} \sum_{t=1}^{p-1} C_{p-1,t} s^{pet}$$

$$\equiv (p-1)\delta_{re} \{ (1+s^{pe})^{p-1} - 1 \} \pmod{p^{e+1}}.$$

Therefore (3) and (4) imply

(5) 
$$\Delta_{p-1}' \equiv -(p-1)^{p-1} \prod_{i=1}^{p-2} \left\{ (1+r^{pe})^{p-1} - 1 \right\} \pmod{p^{e+1}}.$$

Incidentally it is easily verified that

$$D'_{\epsilon} D_{\epsilon} \equiv (p-1)^{p-1} \pmod{p^{\epsilon+1}},$$

so that

(6) 
$$\Delta_{p-1}' \equiv (p-1)^{p-1} \Delta_{p-1} \pmod{p^{e+1}}.$$

From (5) and (6) we get

(7) 
$$\Delta_{p-1} \equiv -p^{p-2} \prod_{r=1}^{p-2} q(1+r^{p^e}) \pmod{p^{e+1}}.$$

Now if (1) is solvable we have

$$q(a) \equiv 0 \pmod{p} \qquad (2 \le a \le 46).$$

Also if

$$a^p \equiv a \pmod{p^2}$$

it follows at once that

$$(1+a^{p^e})^{p-1} \equiv a^{p-1} \equiv 1 \pmod{p^2} \qquad (a < 46),$$

so that

$$q(1+a^{p^e}) \equiv 0 \pmod{p} \qquad (a < 46),$$

for all  $e \ge 0$ . Hence (since p > 50) (7) yields

$$\Delta_{p-1} \equiv c p^{p+43} \pmod{p^{e+1}},$$

where c is some integer. If we take

$$e = p + 42$$

we obtain the following

THEOREM. If the equation

$$x^p + v^p + z^p = 0$$

is solvable in rational integer x, y, z each prime to p then

$$\Delta_{p-1} \equiv 0 \pmod{p^{p+48}}.$$

We remark that the theorem is meaningful only for  $p \equiv -1 \pmod{6}$  since the determinant  $\Delta_{p-1}$  is zero when  $p \equiv 1 \pmod{6}$ .

## REFERENCES

- 1. L. Carlitz, A determinant connected with Fermat's last theorem, Proc. Amer. Math. Soc. vol. 10 (1959) pp. 686-690.
- 2. E. Lehmer, On a resultant connected with Fermat's last theorem, Bull. Amer. Math. Soc. vol. 41 (1935) pp. 864-867.
- 3. H. S. Vandiver, Fermat's last theorem. Its history and the nature of the known results concerning it, Amer. Math. Monthly vol. 43 (1946) pp. 555-578.

**DUKE UNIVERSITY**