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In this note the following theorem will be proved:

Theorem 1. Let abe a real number. Let g be a polynomial of degree

£= 1. Define

00

G = ^ g([na])xn.
n-0

Then G is a rational function of x if and only if a is a rational number.

As usual, [x] denotes the integral part of x and {x} the fractional

part of x, so that x= [x]+ }x}. We first prove

Lemma 1. Let abe a real irrational number, and let R be a finite set

of non-integral real numbers. Then there are infinitely many positive

integers m such that

(1) [[ma] + r] = [r],        r G R,

and infinitely many positive integers n such that

(2) [{na} + r] = 1 + [r],        r G R.

Proof. We have that (1) is completely equivalent to

O á {ma} + {r} < 1,        r G R

and that (2) is completely equivalent to

0 g {na} + {r} - 1 < 1,        r £ R.

Since R consists of a finite number of nonintegral reals, there are

numbers a and b such that

0<i^{r)gi<l,        rG R-

Therefore we need only choose m and n so that

(3) [ma] <l-b,

(4) {na\ = 1 - a.

Since a is irrational the numbers {a}, {2a}, • • •   are uniformly
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distributed in the unit interval, and so (3) and (4) each have in-

finitely many positive integral solutions. This completes the proof of

the lemma.

We go on now to the proof of Theorem 1. Assume first that a is

irrational. If G is rational, then polynomials A and B of degrees a and

b respectively exist such that G — B/A; and there is no loss of gen-

erality in assuming that

A = 1 — Cix — c2x2 — ■ • • — cax°.

Then AG — B, and comparing coefficients we find that

a

(5) g([««]) = ^ g([na — ra])cr,       n ^ a, n > b.
r=l

Now for i^r^a,

g([nct — ra\) [na — ra]p
lim -¡r—j- = lim --—-= 1.
"—"      g(lM£*J) "—"       [na\v

This implies that

(6) f) Cr - 1.
r=l

Hence

a

Z) (g([na - »"«]) - g([na]))cr = 0.
r-l

We have [na — ra]= [{na} — ra]+[na] and so

<\ h       (\    ^      ^gw(M)r(     , .
g([na — ra\) — g([na\) = ¿^ -l\na] ~ ra\ ■

k=i        k\

Thus

X) [{na} - ra]cr + X) T, TTTTr—TV [{»<*} - r«]*cr " °-
r-i r=i k~i  klg ([na\)

If p=i the last sum is vacuous, and if p^2 we have

hm L [{na} - m]* = 0, 2 ^ k ^ p,
»-*«   g (L»aJ)

since the numbers [{««} — rat}* are uniformly bounded for all «. In

either case, we deduce that
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a

(7) lim   X) [{»«} - ra]c, = 0.

Now the numbers —ra are nonintegral for i^r^a. Thus Lemma 1

applies and choosing sequences for which (1) and (2) hold, we obtain

(8) ¿ [-ra]cr = 0,
r=l

(9) è (1 + [-r«]K = o.
r=l

But (8) and (9) together imply that

a

E Cr  -   0,
r— 1

which contradicts (6). Thus we have proved that if a is irrational

then G is not a rational function.

Suppose now that a is rational, and write a = c/d where d>0,

(c, d) = \. Then

G= ¿i([«a])jC= Z ¿g(™c+   '-J Y
n=0 r=0 m=0      \ L       O J/

= ES  I-(mc)kxmi+T
r=0 m=0    jfc-0 »!

d-i v g vltJ/

r=0 4-0 »' m-0

.wid-f r

But it is well-known that

m=0

is rational: Indeed,

/   d\*
mhxm = I x —• J (1 — x)_1.

Hence G is also rational, and the proof of Theorem 1 is complete.

An interesting result that Theorem 1 implies is
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Theorem 2. Suppose that a>0. Define

CO

F = 2 z1""1-
n-0

Then F is a rational function if and only if a is rational.

Proof. Suppose that a is irrational. Let x(n) be the number of

solutions of n= [ta] in non-negative integers t. Then obviously,

QO

F «■ £ x(w)x\
n=0

But x(») is just the number of integers t satisfying n¿ta<n-\-l; and

since a is irrational, this implies that

Thus

F = (1 - x) ¿ f—I x»-1

and the conclusion (for a irrational) follows from Theorem 1.

Suppose now that a is rational, and write (as before) a = c/d where

d>0, (c, ¿) = 1. Then

oo d—1     oo

f   =    V  j;H    =    X    S   XmC+[r(,:/,í)]

n—0 r—0 m—0

d-1

= (1 - Xe)-1 X) ï,,WflI.

r-0

Hence F is rational, and the proof of Theorem 2 is complete.
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