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In this note the following theorem will be proved:

THEOREM 1. Let o be a real number. Let g be a polynomial of degree
p=1. Define

G =3 g([na)an.

n=0
Then G is a rational function of x if and only if a is a rational number.

As usual, [x] denotes the integral part of x and {x} the fractional
part of #, so that x= [x]+ {x}. We first prove

LEMMA 1. Let « be a real irrational number, and let R be a finite set
of non-integral real numbers. Then there are infinitely many positive
integers m such that

€y [{ma} +71 =], rER,
and infinitely many positive integers n such that
) [{na} +7]=1+1[], reRr

Proor. We have that (1) is completely equivalent to
0= {me}+{r} <1, rER
and that (2) is completely equivalent to
0= {na} +{r} —1<1, rER

Since R consists of a finite number of nonintegral reals, there are
numbers @ and b such that

0<aesf{r}sb<1, reER

Therefore we need only choose m and % so that

(3) {ma} <1 -,
4 {na} 21 —a.
Since « is irrational the numbers {a}, {2a}, - - - are uniformly
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distributed in the unit interval, and so (3) and (4) each have in-
finitely many positive integral solutions. This completes the proof of
the lemma.

We go on now to the proof of Theorem 1. Assume first that « is
irrational. If G is rational, then polynomials A and B of degrees a and
b respectively exist such that G=B/A4; and there is no loss of gen-
erality in assuming that

A=1—c,x-—02x2—--~—c,,x“.

Then AG=B, and comparing coefficients we find that

) gllnal) = 3 gllne — raba, nza,n>b.
Now for 1=7r=a,
. gna—ra])  [na—ra]?
lim ———— = lim ———— =1,
n— o g([na]) n— o [na]"

This implies that
(6 g ¢ =
Hence

3 (e(lna = ra]) — ellnal))e = .
We have [na—ra]=[{na} —ra]+[na] and so

Y [ mx} — ra)*.
k=1 !

g([na — ra]) — g([na]) =

Thus
5 [{ne} = ree+ = 5 £ p10) e, o
oo kg ([nal)
If p=1 the last sum is vacuous, and if p =2 we have

lim 80 ([ﬂa])
m

- [{na} ral* = 0, 25 k<,
n—> o g(

since the numbers [{na} —ra]" are uniformly bounded for all #. In
either case, we deduce that
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O] lim :V_: [{na} — raje, = 0.

N0 pu]

Now the numbers —ra are nonintegral for 1 £r <a. Thus Lemma 1
applies and choosing sequences for which (1) and (2) hold, we obtain

® Z: [—rale = 0,

©) 3 (1 + [=ral)e = 0.

r=l

But (8) and (9) together imply that

Zc,=0,

Tl

which contradicts (6). Thus we have proved that if « is irrational
then G is not a rational function.

Suppose now that « is rational, and write a=c/d where d>0,
(¢, d)=1. Then

G= 28([%])96" = E i g(mc + [r —]) gmd+r

nm=0 r=0 m=0

w(| Z
= dil i ’2 j()_<|:_d_:|>_ (mc)kxmd+r

r=0 m=0 k=0 k!

= Elzp —ﬂ[—d—l) ckar i mEame,

re=0 k=0 M=

But it is well-known that

0

> mkam

m=0
is rational: Indeed,

Zm"x’” = (x di) 1 —=1

m=0

Hence G is also rational, and the proof of Theorem 1 is complete.
An interesting result that Theorem 1 implies is
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THEOREM 2. Suppose that a«>0. Define
F = Z xlnel,
n=0
Then F is a rational function if and only if a is rational.

ProoF. Suppose that « is irrational. Let x(#) be the number of
solutions of # = [ta] in non-negative integers ¢. Then obviously,

F = i x(n)x".

But x(n) is just the number of integers ¢ satisfying n <ta<n-+1; and
since « is irrational, this implies that

o -[==]-[7]

F=(1-2) i[%] a1

n=1

Thus

and the conclusion (for « irrational) follows from Theorem 1.
Suppose now that « is rational, and write (as before) a=c¢/d where
d>0, (¢, d)=1. Then

0 d—1 o
F = lenal = Z E gmetlr(cld)]
n=0 r=0 m=0

d—1
= (1 — x9)1 Y glrte/d],

ra=0

Hence F is rational, and the proof of Theorem 2 is complete.
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