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Inspired by the works of Court [3-10] in regard to cevian tri-

angles and tetrahedra, it is proposed to introduce their analogues in

higher spaces, establish a number of new results, and observe their

interesting relations with the associated quadrics and S-configura-

tions. The knowledge of the axioms of incidence in a projective space

of re dimensions, or briefly in an re-space, is assumed. The treatment

is mainly synthetic and the analytic is suggested. The notations used

here for intersections, joins, harmonic conjugacies, cross ratios, etc.

follow Coxeter [ll].

1. Introduction, a. Let M be a point and S = (A{) a simplex in an

re-space with vertices at the re + 1 general points Ai other than M; the

(re — l)-dimensional simplex as well as the hyperplane of 5 opposite

Ai be both denoted by its prime face a{, its (re —2)-dimensional

simplex and (re —2)-space opposite its edge AiA¡ by its (n — 2)-face

aij, etc.; but for brevity, AiA¡ be denoted by o,y, the triangle AiAjAk

as well as the plane Akaa of 5 be both denoted by its plane face aijk,

its tetrahedron AiA¡AkAi and the solid Aiaak by its solid face aijki,

etc.; al-AiM = A¡, Ma^-a^^M1', Mai'-aij = Ma, Mai'k-aijk = Mijk,

Miik = ai'k-Maijk, • ■ • . S'= (Ai) is then another simplex perspective

to 5 from M. If p be an element of 5 or associated with 5, let the

corresponding one of S' be denoted by p'. Now by axioms of incidence

only we have the following

Lemma 1. The C£+1 joins MuM*', the Cl+1MijkMiik, ■ ■ ■ , all concur

at M as the secants through M to the corresponding pairs of opposite

spaces of the simplex S. For every given value of i, the « joins AjM1',

the Cl MjkMiik, ■ ■ ■ , concur at Ai. For every given value of i, j, the

re— 1 joins AkMiik, the Q~1MkiMi'kl, etc. concur at M'> ■ • • . For every

given value of i, j, k, I, the 4 joins AiMjki and the 3 MijMki concur at

Maki- For every given value of i,j, k, the 3 joins AiMjk concur at Mijk.

b. Definition 1. The joins A(Ai, M^Ma, MiikMijk, • • • , are

respectively said to be the cevians, bicevians, 3-cevians, etc. of 5. S' is

called the cevian simplex of .S for M, or of M for 5 which is then

referred to as the anticevian simplex of S' for M in analogy with such

triangles and tetrahedra [4-7].

As an evident consequence we have another
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Lemma 2. The cevians of all orders of a simplex S through a point M

lie respectively along those of its cevian as well as anticevian simplex for

M.

c. Lemma 3. The hyperplane m of perspectivity of a simplex S and

its cevian simplex S' for a point M coincides with the "polar" of M for

S or S'.

Proof. The 4 collinear triads of points A iMAi, A ¡MA,1, A{A¡ M1',

A' AjM*1' are coplanar and form a quadrilateral q whose diagonal tri-

angle is M'ijAijMij (§la), where Aij = aij-a'iJ = A'ij. Now by the har-

monic property of q, HiAiA3, Mi3Ai3), HiA¡A¡, M¿/4¿). Again the

polar hyperplane m[l4; 15] of M for 5 or S' contains the C|+1 points

Aij = A'ij. Hence the result.

2. Medial simplex. Let G, G', G", • ■ • , Gijki, Gi3k be respectively

the centroids of the simplex 5 (§la), its prime face a*', (» — 2)-face

ai¡, ■ ■ ■ , tetrahedron ai3ti, triangle ai3k, and G¿y be the midpoint of

its edge a<y. AiG\ G''Gi3, GijkGi¡k, • ■ ■ , are then respectively its

medians, bimedians, 3-medians, etc. and (G') is its medial simplex

evidently homothetic to it w.r.t. G with GG': GAi=—l: n as their

homothetic ratio [16]. Thus by Lemma 3 we have

Lemma 4. The medial simplex of a given simplex is its cevian simplex

for their common centroid, the hyperplane of their perspectivity being

at infinity, and is therefore projectively equivalent to its cevian simplex

for any other point.

3. Homology. Let m he a hyperplane, M a point outside it, and k

a constant. A point P is said to transform into P' in the homology

iM, m,'k), if the biratio, cross ratio or anharmonic ratio iPP', MQ)

= iPM-P'Q)/iQP-MP')=k, where Q = m-MP. If m be at infinity,
this homology becomes the homothety iM, k) such that P, P' are

homothetic w.r.t. M with k = MP/MP' as its ratio. Now the cevian

simplex S' of 5 (§lb) for M becomes its medial, if M lies at their

common centroid G (§2) and consequently m recedes to infinity. Thus

we have

Theorem 1. A simplex in an n-space transforms into its cevian sim-

plex S' for a point M in the homology iM, m, —n), m being the hyper-

plane of perspectivity of S' and the given simplex S.

4. The converse proposition.

Theorem 2. If the simplex S and its elements be as in §la and Cl+1

points Mi, be marked on its edges ai3, one on each edge, such that the 3
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cevians A3Mki of each of its C\ plane faces ai3k through a vertex A i con-

cur respectively at Mi3k, the same is true of its every triangle; the 4

cevians AiM3ki and the 3 bicevians Mi3Mki of its every tetrahedron ai3ki

concur respectively at Mi3ki\ • • • ; the Cl+l hyperplanes Mi3aij all

CONCUR at M where also CONCUR the C¡+1 in-2)-spaces Mtjkaiik,
the Cl+1 in — 3)-spaces Mi3kiaiikl, and so on.

Proof. Let An be the Cl+1 points on the edges ai3 of S such that

HiAiAj, MijAij). The 3 points Ai3, A,k, Aki are then collinear in the

harmonic or trilinear polar mi3k [7; 9; 11 ] of Mi3k for the triangle ai3k.

The C^such lines lie in the hyperplane m determined by the « points

An on its edges through A¿. Thus m contains all the C2l+1 points Ai3.

Hence A y, Mi3 form the C2+1 pairs of opposite vertices of an S-

configuration [14] such that the pole M oí m for 5 is one of the 2"

vertices of its dual thus satisfying the requisite conditions of the

theorem by Lemmas 1 and 3.

We may project m to infinity to connect M with S as its centroid

G and be at ease for the rest of the proposition as the necessary con-

sequence.

5. The cevian chain, a. The homological relation (M, m, —n) of the

2 simplexes 5 and S' (§3) discloses that we can derive either from

the other, given m or M. We may also repeat the construction in

either direction to construct a cevian simplex S" of S' as well as the

anticevian 'S of 5 for M or m.

Definition 2. S" may be called the second cevian simplex of 5 as

well as the third cevian of 'S for M or m, and 'S may be referred to as

the second anticevian simplex of S' as well as the third anticevian of

S" for M or m (cf. [9]).

b. This construction of the chain of cevian as well as anticevian

simplexes of 5 for 717 may be continued indefinitely and we may note

the following properties in regard to them (cf. [9]):

(i) The polar hyperplane m oí M for every simplex, or link, of the

chain, is the same, and hence the same is true of its cevians of all

orders (Lemma 2).

(ii) Any 2 links of the chain are perspective from M with m as

the hyperplane of their perspectivity.

(iii) Of 2 consecutive links of the chain, one is inscribed in the

other and forms its cevian simplex for 717.

(iv) Any link of the chain may play the role of the initial one.

(v) Such a cevian chain is determined by a simplex and either a

point 717 or a hyperplane m.

(vi) Associated with a chain of cevian simplexes perspective from
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a point M is a chain of ^-configurations (§4) such that they all have

C£+1 vertices common in their common hyperplane m and their other

vertices lie on the C£+1 common bicevians of the simplexes, concur-

rent at M, one vertex of each configuration on each line.

c. Following Court [9] or making repeated use of the biratio of

the homology of §5a by projecting m to infinity (§3) we can prove

Theorem 3. If S, M, m be as in §3, the ith cevian simplex of the

the simplex S for M is its transform in the homology (M, m, (—»)*).

(This result provides a method to construct the cevian simplex of

any order of 5 for M without constructing the intermediate ones.)

Theorem 4. The biratio of 4 collinear vertices of 4 cevian simplexes

of order p, q, r, s of S for M, or that of these 4 links of the chain of

cevian simplexes perspective from M and startingfrom S, is (tp — f) (f — t')

l(tv — ls)(tq — tT), where t= —re. Hence the biratio of any 4 consecutive

links is the same constant, anywhere in the chain, equal to (n—i)2

/(re2-re + l).

6. Cevian quadric. a. In an w-space w(«+3)/2 general points al-

ways determine an (re— l)-quadric. Let Q be one which touches the re

edges of the simplex 5 (§la) through a vertex Ai at their respective

points Mij and passes through the other C2 points Mjk. The section

of Q by a plane face a,-,-* of 5 is then a conic qak which touches its 2

edges an, aki respectively at Ma, Mki and passes through Mik. Now

the 3 cevians AtMjk of the triangle aijk concur at Miik by Lemma 1.

Then by Gergonne's theorem [8] qijk touches its third side a¡k at

M¡k with Mijk as its Gergonne point [lO] for qijk. Thus the C\ edges

a¡k of S, too, touch Q at their respective points Mjk. Hence we have

the following

Theorem 5. There always exists a quadric Q tangent to the edges of

a simplex S at the respective feet of its bicevians concurrent at a point M

[12].

Definition 3. Q may be said to be the cevian quadric of 5 for M

which may be referred to as the pole of contact of Q for 5. When M

lies at the centroid G of S, Q may be called the ellipsoid of Steiner,

or briefly "eSt" of S, for then it cuts the plane faces of S in their

inscribed ellipses of Steiner [8; 10 ].

b. Following Theorem 2 we may prove the converse proosition as

Theorem 6. If C£+1 points be marked on the edges of a simplex S in

an n-space, one on each edge, such that there exist C% conies, one in each

of its C% concurrent plane faces touching its 3 edges therein at their re-
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spectively marked points, the same is true of its every triangle and the

C%+1 such conies all lie on its cevian quadric Qfor a point M such that

the marked points are the feet of its bicevians through M.

As an evident consequence we have the following

Theorem 7. If Q be the cevian quadric of the simplex S for a point

M, and S along with its associated elements be as in §la, the section

of Q by a prime face a* of S is its cevian (n — 2)-quadric for Ai, • • • ,

and that by a plane face am of S is its cevian conic qnk for Mi¡k.

c. The « points Ma on the re edges of the simplex 5 through a

vertex Ai determine the polar hyperplane p{ of Ai for the quadric Q

(§6a) by virtue of its construction. The re points Mij (§la) determine

the hyperplane a{ of 5. Now if m (§lc) be the hyperplane at infinity,

M lies at the centroid G of 5, M*> at the centroid Gfi of its (re —2)-

face aij (§2), and Ma at the midpoint Gn of its opposite edge an

such that GGij-.GiiG = (n — \):2, i.e., p{ transforms into a1 in the

homothety (G, (1—re)/2). Thus by §3 we have the following

Theorem 8. If S, M, m be as in §3 and Q be the cevian quadric of

the simplex S for M, the polar simplex of S for Q transforms into S in

the homology (M, m, (1—re)/2). Consequently the polar hyperplane m

of M for S coincides with that for Q.

Corollary 1. The re+1 vertices of S together with M form a self-

conjugate (n-\-2)-ad of points for Q such that the line joining any two

of them is conjugate to the hyperplane containing the other n points for

Q and consequently the polar (n—p)-space for Q of the (p — 1)-space

containing any p of them lies in the (n — p-\-\)-space containing the

other n — p+ 2 points. Every one of these re+ 2 points is the center of

perspectivity of the simplex formed of the other w +1 points and its polar

for Q [1, Ex. 1, p. 218; 17].

Corollary 2. The center of the "eSt" of a simplex lies at its centroid

(§6c).

d. The collinearity of the points Mi¡, M, Ma (§la) implies that

their polar hyperplanes for the quadric Q are coaxial. The polar

(n — 3)-space of Mij for the (re —3)-quadric section of Q by the (re —2)-

space a'' of the simplex S lies in the polar hyperplane m oí M for Q

as that for its (re —2)-face a*' by Theorems 7 and 8. Thus we have

Theorem 9. // S, M, Ma, m, aij, an be as in §1 and Q be the cevian

quadric of the simplex S for M, the tangent hyperplane of Q at Ma is

(m-a^an.
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7. Ring contact of cevian and polar quadrics. a. The cevian conic

Qi3k of the triangle ai3k for Mi3k (§6a) is the polar conic [ll] of this

point for its cevian triangle Mi3M3kMki [9]. (It may be remarked

here that this is not true in a solid or higher spaces, i.e., the cevian

quadric of a tetrahedron or a simplex for a point 717 is not the polar

quadric of M for its cevian tetrahedron or simplex for M.) The polar

line mijk (§4) of Mi}k for either triangle coincides with that for q¡,k

and therefore with that for the polar conic wi3k of Mi3k for 0,7*. Now

Court [9] has shown that conies like Wi3k, qt3k belong to a pencil of

doubly tangent conies, their common chord of contact being my*. Again

the Cj}+1 conies like qt3k lie on the cevian quadric Q of the simplex 5

for 717 (§6a); the conies like wi3k, each circumscribing the triangle

auk, are seen to lie on the polar quadric W, of 717 for S, circumscribing

S; the Cl+1 lines mi3k lie in the polar hyperplane m oí M for S, Q, or

W. Thus follows

Theorem 10. The cevian and the polar quadrics Q, W of a point 717

for a simplex S have a "ring" contact along the polar hyperplane m of

M for S [2, p. 103].

b. Analytically it becomes almost obvious. For the equation of

the cevian quadric Q of the simplex 5 for a point 717 referred to S

may be at once put down as J^xf—2^XiXy = 0 [12], 717 being the

unit point (1, • • • , 1) of 5. It is equivalent to 4 y~lx,;X,- — ( y,x¿)2 = 0

thus showing that Q has ring contact with the polar quadric

W=¿^XiX3 = 0oí M for 5.

8. Associated ^-configuration. We have seen in §4 how the feet

717,j of the bicevians of the simplex 5 through 717 on its edges and

their "harmonics" Ai3 thereat form an 5-configuration (5— C) with

717 as a vertex of its dual or reciprocal iR-S—C). The (S — C) has 2"

hyperplanes, one of them being m, containing all the Ai3, as the polar

of 717 for 5 [14]. Let 717s be the other vertices of the iR-S—C) as

the poles of the other hyperplanes m' of the (5— C) for their common

diagonal-simplex 5. Every m" contains C^+1 points 717,-y or Ai3 and

is determined by « such points on any « concurrent edges of S, one

on each edge. Hence the hyperplanes p' oí the polar simplex of 5

for its cevian quadric Q (§6c) coincide with « + 1 hyperplanes of the

iS—C) (cf. [8]). We can now construct the cevian quadric Qs of 5

for every 717S and have

Theorem 11. The cevian quadrics of a simplex S in an n-space occur

in sets of 2" each such that the poles of contact of those of a set for S

form the vertices of the dual of an S-configuration iS—C) with S as
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their common diagonal simplex. Each quadric of the set touches the edges

of S at the vertices of the (S— C) other than those lying in its correspond-

ing hyperplane. The polar of each vertex of S for every quadric of the

set is a hyper plane of the (S—C).

9. Pencil of cevian and polar quadrics. From Theorem 10 and the

homological character of the links in a chain (§5) of cevian simplexes

perspective from a point M follows the following

Theorem 12. The cevian and the polar quadrics of a point M for the

links of a chain of cevian simplexes perspective from M belong to a

pencil having a ring contact along the common hyperplane of perspectiv-

ity of the chain.

10. Bipunctual quadric. a. Hameed [12] proves analytically that

the feet of 2 sets of bicevians, of a simplex S, concurrent respectively

at 2 points K, L, on its edges lie on a quadric U. We can establish the

same synthetically too by the method of §6a based upon the cor-

responding theorem for a triangle [l, Ex. 29, p. 53] as done by Court

[6] for a tetrahedron and pointed out by Hameed himself [l2]. The

harmonically conjugate [2] or harmonic [12] quadric of U splits up

into the pair of polar hyperplanes of K, L for S. Thus we have

Theorem 13. // a quadric U passes through the feet of a set of con-

current bicevians of a simplex S on its edges, U meets them again in the

feet of another set of concurrent bicevians of S. If re pairs of points of U

on re concurrent edges of S be "isotomic'" (i.e., equidistant from their re-

spective midpoints), all such pairs behave alike, and U then becomes the

"eSt" of S in the limit when these pairs of points coincide on their re-

spective edges (§6a).

Corollary. If Kn, La be pairs of isotomic points on the edges of a

simplex S such that Kn are the feet of its bicevians concurrent at K, La,

too, lie at the feet of its bicevians concurrent at L (say).

Definition 4. K, L in this corollary may be referred as a pair of

isotomic conjugate, or briefly isotomic, points for 5 in analogy with

such points for a triangle [7], and their polars for S as a pair of

isotomic hyperplanes for 5. The quadric like U in general may be

said to be bipunctual for 5 w.r.t. the pair of points K, L in analogy

with such a conic for a triangle [l; 13].

b. We may thus develop the theory of the cevian quadric Q of a

simplex for a point M as a limit of its bipunctual quadric U w.r.t.

a pair of points K, L when K, L coincide at M [12].
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11. Special simplexes. a. Following Court [3] and making use of

Theorem 6 we can now prove the following

Theorem 14. If S—iAÎ) be the simplex with vertices at the centers

of w +1 hyper spheres, in an n-space, which touch one another externally,

the C£+1 points Mi3 of their contact lie on the hypersphere (P) orthogonal

to the given hyper spheres such that their C^+1 centers of similitude Ai3

lie in a hyper plane m. The pole 717 of m for S is the point for which (P)

is the cevian quadric of S. The C%+1 midpoints of the segments Ai3Mi,

lie in the "Newton hyper plane" p of the S-configuration with vertices at

A a, Mi3. The radical hyperplane of (P) and the circumhy per sphere (5)

of S coincides with p [14; 19].

b. If a simplex S be orthogonal or orthocentric with orthocenter at

H, the « — 1 altitudes of its « — 1 plane faces through an edge ai3 to

ai3 concur at the foot Mi3 on a,-,- of its bialtitude to at, [18]. Hence by

Theorems 6 and 13 we have the following

Theorem 15. There exists a quadric Q touching the edges of an orthog-

onal simplex S, in an n-space, at the feet thereat of its bialtitudes as its

cevian quadric for its orthocenter H. The 9-point circles of its plane

faces lie on its "first «(« + 1) point-sphere" U as its bipunctual quadric

w.r.t. H and its centroid G. The radical hyperplane h of U and its cir-

cumhyper sphere (5) coincides with the polar of H for S or Q as well as

with that of G for the polar hypersphere (Tí) of S. GH is therefore a nor-

mal to h, i.e., h is normal to the "Euler line" of S [18 J.

Thanks are due to Professor B. R. Seth for his generous, kind and

constant encouragement in my work.
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GENERALIZATION OF COHN-VOSSEN'S THEOREM

CHIN-SHUI HSÜ

In this paper Cohn-Vossen's Theorem [l; 2, pp. 127-133] is ex-

tended to a characterization of similarity in E3. All surfaces here

concerned are assumed to be orientable, closed, convex and of class C3.

All homeomorphisms between surfaces are assumed to be differenti-

able. A scalar C2 function on a surface is harmonic if it satisfies the

Laplace equation

A(4>) = 0

where A is the second differential operator of Beltrami.

Lemma 1. (Hopf-Bochner [3; 4]). The only harmonic function

defined on a surface is constant.

Lemma 2. Given two surfaces S, S and a homeomorphism h: S—»S

where h is conformai, the ratio of the first fundamental forms p = ///

satisfies

A(log p) = 2(7? - pK)

where K, K are the Gaussian curvatures.

Proof. Since the quantities on both sides of the equation are

scalars it needs only to verify in a particular system of coordinates.

For C3 surfaces isothermal coordinates exists locally [5]. By employ-

ing such coordinates the verification is straightforward.
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