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1. A statistical metric space2 (briefly, an S M space) is a set 5

and a mapping $ from SXS into the set of distribution functions

(i.e., real-valued functions of a real variable which are everywhere

defined, nondecreasing, left-continuous and have inf 0 and sup 1).

The distribution function *5(p, q) associated with a pair of points

(p, q) in S is denoted by Fpq. The functions Fpq are assumed to

satisfy:

(SM-I)  Fpq(x) = 1 for all x > 0 iff p = q.

(SM-II) Fpq(0)=0.
(SM-III) FPq = Fqp.
(SM-IV)  If Fpt(x) = 1 and Fqr(y) = 1, then Fpr(x+y) = 1.
A real-valued function T, whose domain is the set of real number

pairs (x, y) such that 0 5¡x, y SI, is called a t-function if it satisfies

the following conditions:

(T-I)  T(a, l)=a, T(0, 0)=0.
(T-II)  T(c, d) ^ T(a, b) if c^a, d^b.
(T-III)  T(a,b) = T(b,a) (commutativity).

(T-IV)  T[T(a, b), c] = T[a, T(b, c)] (associativity).

Definition 1. A Menger space (S, 5, T) is an SM space (S, ff)

and a ¿-function T such that the triangle inequality,

(SM-IVm) Fpr(x+y)^T(Fpq(x), Fqr(y)),

holds for all points p, q, r in S and for all numbers x, y^O.

Definition 2. The ¿-function Ti is stronger than the ¿-function T2,

and we write Ti^T2, if 7"i(x, y) ^ T2(x, y) for O^x, yál¡ Ti is

strictly stronger than T2 if Ti is stronger than T2 and there is at least

one pair of numbers (x, y) such that 7\(x, y) > T2(x, y). Correspond-

ingly, T2 is weaker or strictly weaker than Tu

For a given SM space there is in general more than one ¿-function

which makes it a Menger space. In particular, if (S, í, J") is a Menger

space and U is weaker than T, then (S, ï, U) is also a Menger space
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(so that the property of being a Menger space is hereditary under the

relation "weaker than").

A ¿-function gives, in a sense, information about the interrelation-

ships between the various distribution functions of the underlying

SM space. It follows, in general, that the stronger the Menger func-

tion, the more information one has about the structure of the SM

space. Hence it is natural to ask whether, given an SM space that

can be made into a Menger space, there is a strongest such ¿-function.

Similarly it is of interest to know whether, for a given /-function

there exists a corresponding space for which it is strongest.

In this paper we completely solve the latter problem referred to

above by constructing, for a given ¿-function, a space such that it is

strongest. The space constructed has an uncountable number of

points. However for some ¿-functions it is possible to construct spaces

with a finite number of points. We illustrate this by an example, and

introduce an alternate construction (not always possible) which is of

some interest in itself. The construction for the general case is effected

by associating a constraining triangle with each point in the domain

of T. The alternate construction uses a single triangle to constrain T

along a curve or even throughout a region.

The problem of finding a best possible ¿-function for a given SM

space is considerably more difficult since it usually depends on the

particular form of the distance distribution functions Fpq. However,

a number of results of a general nature can be obtained. These are

presented in the second part of this paper, where we also give an

example of a Menger space for which there is no strongest ¿-function.

2. Theorem 1. Let T be a t-function. Then there exists a Menger

space for which T is the strongest t-f unction satisfying (SM-IVm).

Proof. We construct an SM space such that for every point (a, b)

in the unit square, there are points p, q, r in S and numbers x, y,

such that Fpq(x)=a, Fqr(y)=b, and Fpr(x+y) = T[FPq(x), Fqr(y)].

For a fixed (a, b) in the interior of the unit square, choose three

points {l,2,3}. The distribution functions relating these three points

are defined as follows:

[0, x g 1 - €,

F12(x) =

Fu(x)

0, x á 1 - e,

a, 1 — c — » á 1,       F23(x) =   b, 1 — e < x g 1,

[1, 1 < x, [l, 1 < x,

0, x ^ 2 - 2e,

T(a,b), 2-2e<x^2-e,

.1, 2 - £ < x, where   0<eg 1/2.
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To verify (SM-IVm) for this set of three points, we need only check

permutations of the one distinct triple [3, Lemma 2.4]. Moreover, in

view of the symmetry of the Fpq, there are only three distinct per-

mutations. Our task is further simplified because (SM-IVm) is

automatically satisfied for those values of x or y making either dis-

tribution function on the right zero (since T(0, a) = 0) and for those

values of x+y making the distribution function on the left one (since

T(a, b)^l). We check the remaining possibilities.

Case 1. Fi3(x+y)^T(Fu(x), F23(y)).

(a) 1 - ( < * | 1    and    1 - e < y g 1.

The left side is at least T(a, b) and the right side is at most T(a, b).

For what follows it is important to note that equality is attained, for

instance, when x = y= 1 —e/2.

(b) 1 - e < x g 1,    1 < y,    or    1 - c < y g "it,    1 < x.

Then 2 —e<x+y, so that the left side is 1.

Case 2. F12(x+y) ^ T(Fn(x), F23(y)). The right side is 0 unless

x > 2 — 2e and y > 1 — e, in which case the left side is 1.

Case 3. F23(x-\-y) ^ F(Fi3(x), Fj.2(y)). This is similar to the preced-

ing case.

Next, with every point (a, b) in the interior of the unit square, we

associate a triple of points in S whose distance distribution functions

are defined as above. Hence each (a, b) has a "triangle" that cor-

responds to it. We define the distribution function of any pair of

points belonging to different triangles to be H(x— 1), where H is the

distribution function defined by,

(0,       x <, 0,
E(x) =  \

11,        x > 0.

The totality of triangles of points so obtained will be the SM space

of the theorem. It remains to verify (SM-IVm) for distinct triples

involving points from two or three triangles.

If the three triangles are distinct, (SM-IVm) becomes H(x+y— 1)

^ T(H(x—l), H(y—\)). The right side is 0 unless x and y both ex-

ceed 1. But then x+y>l, so that the left side is 1.

If there are two triangles, then one of them will contain exactly

one point of the triple, say p. If p appears on the left in (SM-IVm),

then x+y>l makes the left side 1 and x+y^l makes the right 0.

(Note that this is where we need e^l/2.)

If p does not appear on the left side of (SM-IVm), then it appears

in both distribution functions on the right. Hence the right side is 0
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unless both x and y are greater than 1; but then x-\-y>2 and the left

side is 1.

We have thus established that our collection of triangles is a

Menger space under the given T. Furthermore, for this Menger space

the given T is the strongest possible. It cannot be strengthened at

any point (a, b) in the interior of the unit square, for, by construction,

the corresponding triangle is such that for some numbers x, y,

(SM-IVm) holds with equality when the argument of T is (a, b).

This completes the proof of Theorem 1.

It should be noted that some of the properties of ¿-functions, in

particular the associativity, were not used in the proof of the theorem.

Thus the theorem is true for some functions that are not ¿-functions.

In constraining T so that it cannot be strengthened, the construc-

tion in Theorem 1 used one triangle for each point in the domain of T.

The number of points in the resulting Menger space is thus uncounta-

ble. However, for continuous T, a space with a countable number of

points will do, since it suffices to constrain T on a countable dense

subset of the unit square.

It is not known, in general, which continuous functions can be

determined by a space with only a finite number of points. That there

are continuous functions that can be so constrained is demonstrated

by Example 1, below:

Example 1. Let T(a, 6) = max(o+6-l, 0). 5« {l, 2,-3}.

Ix,   0 < x <. 1
?«(*)   =    L , - Tl2

U,    1 < x
Fu = F 23.

According to (SM-IVm), Fn(x+y)tT(Fi2(x), F23(y)). This sug-

gests that we attempt to constrain T by defining Fn to be the smallest

function such that the above inequality is true. Thus, let Fu(c)

= max T(Fii(x), F23(y)), where x+y = c and O^x, y$l; then Fn(c)

= max(c—1, 0) if c^2. Hence Fu should be defined by

Fu(x)

0, x < 1,

- 1,        1 < x ^ 2,

1, 2 < x.

With this definition of Ti3, equality can be obtained in (SM-IVm)

for any x, y such that 0<x, y<l. T(x, y) = T(Fi2(x), F2i(y))

= max(x+y —1, 0) = Fn(x+y). Hence T cannot be strengthened at

any point. Here a single triple of points constrains T on a two-

dimensional region (in this case the whole square).

To verify that these definitions of Ti2, Fn and F« are consistent
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with (SM-IVm) for all possible triples of points, only the one triple

of distinct points needs to be checked [3, Lemma 2.4]. With F13 on

the left, (SM-IVm) holds by the definition of F13. Since F23 = Fi2, it

suffices to check Fi2(x+y) ^ T(Fi3(x), F23(y)) for x+y<l. This re-

duces to x+y^max(x+y—1, 0).

3. Next we investigate the converse of Theorem 1—that is, the

question of whether a given Menger space has a strongest T such

that (SM-IVm) holds.

Theorem 2. If (S, 5) is a given SM space and {Ta}, a in A, is a

collection of functions, each satisfying (T-I), (T-II), (T-III), and

(SM-IVm) on the space (S, 3), then so does sup Ta.

Proof. The conditions (T-I) and (T-II) imply that the collection

{ Ta] is bounded. The rest now follows since sup Ta inherits each of

the properties in question.

Corollary. For every Menger space there is a unique strongest T

satisfying all the conditions required of a t-f unction except possibly the

associativity condition (T-IV).

Example 2. Let F,(x, y) = Max(x+y-l, 0). Let F2(x, y)=3/4 if

3/4^x, y<l, T2(a, 1) = 7i(l, a) =a, and T2(x, y) = 0 otherwise. Both

Fiand T2 are readily shown to be associative. However, F = max(Fi, T2)

is not associative because r[F(3/4, 3/4), l/2] = F(3/4, 1/2) = 1/4

while r[3/4, F(3/4, 1/2) ] = F(3/4, 1/4) =0.
This example shows that the sup of two associative functions need

not be associative and leads at once to:

Theorem 3. There is a Menger space for which there is no strongest

t-f unction.

Proof. By Theorem 2, the T in Example 2 has all the properties of

a ¿-function except associativity. Hence as was noted immediately

following the proof of Theorem 1, the construction of that theorem

applies to yield an SM space such that this T is the strongest function

satisfying (T-I), (T-II), (T-III) and (SM-IVm). This SM space is a

Menger space under Fi and T2. Thus if there were a strongest ¿-

function it would be stronger than T. Since this is impossible, we

have completed the proof.

At present it is not known whether the set of allowable ¿-functions

for a Menger space necessarily has a maximal element. We obtain a

partial result in this direction (Theorem 4).

Definition   3. A   two-place   function   F   is   left-continuous   if
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limI<0_ F(x, b) = F(a, b) and lim„..&_ F(a, y) = F(a, b) for all (a, b) in

the domain of F.

Theorem 4. // (S, if) is an SM space and 3 the set of all left-continu-

ous t-functions T for which (S, 5, T) is a Menger space, then 3 has a

maximal element.

Proof. The set 3 is partially ordered by the relation "stronger

than" (Definition 2). Thus, by Zorn's Lemma, it suffices to show

that the sup of any totally ordered subset of 3 is again in 3. Let

{ Ta}, a in A, be such a totally ordered subset. The order on { Ta}

induces an order (¿) on A via: a^ß if and only if Ta^ Tß.

Let r = sup Ta. In view of Theorem 2, we have only to show that

T is left-continuous and associative.

(1) To show that T is left-continuous, let x, y, O^x, y Sil, and

6>0 be given. Then there is an a such that

0 ^ T(x, y) - Ta(x, y) < t/2,

and, because of the left-continuity and monotonicity of Ta, there is

a 5>0 such that for 0<x—x'<5,

0 g Ta(x, y) - Ta(x', y) < e/2.

Furthermore, from the definition of T,

Ta(x', y) - T(x', y) Û 0.

Combining these three inequalities yields,

T(x, y) - T(x', y) < e,    whenever   0 < x - x' < 5,

whence, in view of the monotonicity and symmetry, T is left-con-

tinuous.

(2) To show that T is associative, it suffices to show that

T[r(ai, bi), Ci] is invariant under any permutation of the elements

(oí, ¿»i, Ci). Let (a2, b2, c2) be such a permutation, and let e>0 be

given. Since 3 is totally ordered, there is a ß such that

0 g T[T(ai: bi), a] - Tß[T(ai, bt), a] < e/2,        i - 1, 2;

and, from the definition of T and the fact that Tß is left-continuous,

there is an a^ß such that both T(oi, bi) — Ta(ai, bi) and T(a2, b2)

— Ta(a2, b2) are so small that

0 ^ Tß[T(a{, bi), a] - Tß[Ta(ai, bi), d] < t/2,     i = 1, 2.

Since aèft it follows that

Tß[Ta(ait bi), a] - Ta[Ta(at, 6.), a] á 0, i = 1, 2.
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Combining the inequalities, we have (remembering that F = sup Ta),

0 ^ T[T(ai, bi), ci] - Ta[Ta(au bi), Cl] < e,

and

0 ^ T[T(a2, b2), c2] - Ta[Ta(a2, b2), c2] < «.

But Ta is associative and symmetric, so that

Ta[Ta(ai, bi), ci] = Ta[Ta(a2, b2), c2].

Consequently,

T[T(ai, bi), ci] - T[T(a2, b2), c2] < t,

from which the result follows.

References

1. K. Menger, Statistical metrics, Proc. Nat. Acad. Sei. U.S.A. vol. 28 (1942) pp.

535-537.
2. B. Schweizer and A. Sklar, Espaces métriques aléatoires, C. R. Acad. Sei. Paris

vol. 247 (1948) pp. 2092-2094.
3. -, Statistical metric spaces, Pacifie J. Math. vol. 10 (1960).

Massachusetts Institute of Technology


