ANOTHER PROOF OF THE MINIMAX THEOREM
D. J. NEWMAN

There are many known proofs of the fundamental theorem of 0-sum,
2 person game theory, the so-called minimax theorem. The following
proof, however, seems to be the shortest yet.

If x=(x1, x5, - - -, %) is a vector in E¥, then we write, as usual,
x=0 to mean x;20, 2=1, - - -, N, x=0 to mean X >0 and X 0.
In what follows M denotes an arbitrary fixed real m X# matrix and
J denotes the m X7 matrix all of whose entries are 1. MT denotes, as
usual, the transpose of M. Consider now,

1. MINIMAX THEOREM. There exists a real mumber v such that
(M —vJ)x=0 for some xSE™ x>0 and (—MT+4+vJT)y=0 for some
yEE* with y>0.

2. THEOREM OF THE ALTERNATIVE. Either
Mzx = 0 for some x € E™, x > 0,
or
—MTy = 0 for some y € E*, y > 0.

3. STIEMKE'S THEOREM [1]. If S is a subspace of EN and S* is its
orthogonal complement, then S\JS* contains some vector X with X = 0.

We shall prove 3 and 3—2—1 (although the proofs of 3 and 2—1
are standard we include them for completeness).

ProoF oF 3. Let 4 be the (closed) set of all vectors x& E¥ such
that |x| =1, x=0. Let P be the operator of projection onto S,
call B=P(4) and let y=P(z) be a vector in B of minimal length.
Suppose y= (31, ¥z - - - ¥) had some negative component, say —y;,
then, withw=(0,0, - - - ,¥;,0, - - - ), |y+w| <|y|,and so | P(z+w)|
=|y+P(w)| £|y+w| <|y|, and this is a contradiction since Z+ W
clearly lies in A. Hence y=0. If y=0 then s&S* and the result fol-
lows since 2EA4. If y>0 then the result follows since y&S.

We now need the following

DerFINITION. If (21, 23, -+ -, 2n) =ZEE™ and (w1, Wy, * * +, Wn)
=wEE" then the vector in E™** given by

(zlzz’ P zm, wl’ wz, “ e e wn)
will be denoted by zXw.
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ProOF THAT 3—2. It is easily seen that the set of all vectors of the
form xX Mx, x€E™, forms a subspace of E™t", as does the set of all
vectors of the form — M7y Xy, y&S E». Next note that these subspaces
are in fact orthogonal complements in E~+*, An application of 3
tells us that either x XMx=0 for some XE&E™ (in which case
x>0, Mx=0) or that —M7yXy=0 for some ySE~" (in which case
>0, — MTy=0). In either case 2 is verified.

Proor THAT 2—1. Let S; be the set of all real numbers, v, for which
(M —v»J)x=0 for some x=0 and similarly let S, be the set of » for
which (= MT+»JT)y=0 for some y=0. It follows directly that both
S1 and S, are closed. Neither Sy nor S. are void since S; contains all
large negative numbers while S, contains all large positive numbers.
Applying 2 to the matrix M —w»J tells us that every »&.S5;\US,. Con-
nectedness of the line now implies that S; and S, must overlap, and
this is the statement 1.
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