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There are many known proofs of the fundamental theorem of 0-sum,

2 person game theory, the so-called minimax theorem. The following

proof, however, seems to be the shortest yet.

If x=(xi, x2, • • • , Xtf) is a vector in EN, then we write, as usual,

x^O to mean x.^0, ¿=1, • • • , N, x^O to mean A>0 and AVO.

In what follows M denotes an arbitrary fixed real mX« matrix and

/ denotes the mXn matrix all of whose entries are 1. MT denotes, as

usual, the transpose of M. Consider now,

1. Minimax Theorem. There exists a real number v such that

(M—vJ)x^0 for some x<E.Em, x>0 and ( — MT+pJT)y'^:0 for some

y(^En with y>0.

2. Theorem of the Alternative. Either

Mx ¡> 0 for some x G Em, x > 0,

or

— MTy ^ 0 for some y G E", y > 0.

3. Stiemke's Theorem [1]. If S is a subspace of EN and 5X is its

orthogonal complement, then S\JSL contains some vector X with X^O.

We shall prove 3 and 3—>2—>1 (although the proofs of 3 and 2—>1

are standard we include them for completeness).

Proof of 3. Let A be the (closed) set of all vectors xG-E^ such

that |x| àl, x^O. Let P be the operator of projection onto S,

call B=P(A) and let y=P(z) be a vector in B of minimal length.

Suppose y=(yi, y2 ■ ■ ■ yn) had some negative component, say — y¿,

then, with w= (0,0, • • • ,y{, 0, • • • ), |y+w| < \y\, and so |P(z+w)|

= |y+P(TO)| ^ |y+«>| <\y\, and this is a contradiction since Z+W

clearly lies in A. Hence y^0. If y = 0 then zG-S11 and the result fol-

lows since zG^4. If y>0 then the result follows since yE.S.

We now need the following

Definition. If (zx, z2, • • • , zm)=Z£.Em and (wlt w2, - - • , wn)

= wGPn then the vector in Em+n given by

(ziz2, • • • zm, wu w2, ■ ■ • wn)

will be denoted by zXw.
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Proof that 3—>2. It is easily seen that the set of all vectors of the

form xXMx, xG-E"1, forms a subspace of Em+n, as does the set of all

vectors of the form — MTyXy, y<E.En. Next note that these subspaces

are in fact orthogonal complements in Em+n. An application of 3

tells us that either xXMx^Q for some X(~Em (in which case

x>0, AfxSrO) or that — MTyXy^0 for some yE.En (in which case

3>>0, — MTy¡íO). In either case 2 is verified.

Proof that 2—>1. Let Si be the set of all real numbers, v, for which

(M—vJ)x^0 for some x^O and similarly let 52 be the set of v for

which ( — MT+vIT)y^:0 for some y^O. It follows directly that both

Si and S2 are closed. Neither Si nor 52 are void since Si contains all

large negative numbers while S2 contains all large positive numbers.

Applying 2 to the matrix M — vJ tells us that every vÇiSi\JS2. Con-

nectedness of the line now implies that Si and 52 must overlap, and

this is the statement 1.
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