ANOTHER PROOF OF THE MINIMAX THEOREM

D. J. NEWMAN

There are many known proofs of the fundamental theorem of 0-sum, 2 person game theory, the so-called minimax theorem. The following proof, however, seems to be the shortest yet.

If $x = (x_1, x_2, \dots, x_N)$ is a vector in E^N , then we write, as usual, $x \ge 0$ to mean $x_i \ge 0$, $i = 1, \dots, N$, $x \ge 0$ to mean $X \ge 0$ and $X \ne 0$. In what follows M denotes an arbitrary fixed real $m \times n$ matrix and J denotes the $m \times n$ matrix all of whose entries are 1. M^T denotes, as usual, the transpose of M. Consider now,

- 1. MINIMAX THEOREM. There exists a real number ν such that $(M-\nu J)x \ge 0$ for some $x \in E^m$, $x \ge 0$ and $(-M^T+\nu J^T)y \ge 0$ for some $y \in E^n$ with $y \ge 0$.
 - 2. THEOREM OF THE ALTERNATIVE. Either

$$Mx \ge 0$$
 for some $x \in E^m$, $x \ge 0$,

or

$$-M^Ty \ge 0$$
 for some $y \in E^n$, $y \ge 0$.

3. Stiemke's Theorem [1]. If S is a subspace of E^N and S^{\perp} is its orthogonal complement, then $S \cup S^{\perp}$ contains some vector X with $X \ge 0$.

We shall prove 3 and $3\rightarrow2\rightarrow1$ (although the proofs of 3 and $2\rightarrow1$ are standard we include them for completeness).

PROOF OF 3. Let A be the (closed) set of all vectors $x \in E^N$ such that $|x| \ge 1$, $x \ge 0$. Let P be the operator of projection onto S, call B = P(A) and let y = P(z) be a vector in B of minimal length. Suppose $y = (y_1, y_2 \cdots y_n)$ had some negative component, say $-y_i$, then, with $w = (0, 0, \cdots, y_i, 0, \cdots)$, |y+w| < |y|, and so $|P(z+w)| = |y+P(w)| \le |y+w| < |y|$, and this is a contradiction since Z+W clearly lies in A. Hence $y \ge 0$. If y = 0 then $z \in S^1$ and the result follows since $z \in A$. If $z \in S^1$ then the result follows since $z \in S^1$.

We now need the following

DEFINITION. If $(z_1, z_2, \dots, z_m) = Z \in E^m$ and $(w_1, w_2, \dots, w_n) = w \in E^n$ then the vector in E^{m+n} given by

$$(z_1z_2, \cdot \cdot \cdot z_m, w_1, w_2, \cdot \cdot \cdot w_n)$$

will be denoted by $z \times w$.

Received by the editors October 24, 1959 and, in revised form, January 4, 1960.

PROOF THAT $3\rightarrow 2$. It is easily seen that the set of all vectors of the form $x\times Mx$, $x\in E^m$, forms a subspace of E^{m+n} , as does the set of all vectors of the form $-M^Ty\times y$, $y\in E^n$. Next note that these subspaces are in fact orthogonal complements in E^{m+n} . An application of 3 tells us that either $x\times Mx\ge 0$ for some $X\in E^m$ (in which case $x\ge 0$, $Mx\ge 0$) or that $-M^Ty\times y\ge 0$ for some $y\in E^n$ (in which case $y\ge 0$, $-M^Ty\ge 0$). In either case 2 is verified.

PROOF THAT $2\rightarrow 1$. Let S_1 be the set of all real numbers, ν , for which $(M-\nu J)x \ge 0$ for some $x \ge 0$ and similarly let S_2 be the set of ν for which $(-M^T+\nu J^T)y \ge 0$ for some $y \ge 0$. It follows directly that both S_1 and S_2 are closed. Neither S_1 nor S_2 are void since S_1 contains all large negative numbers while S_2 contains all large positive numbers. Applying 2 to the matrix $M-\nu J$ tells us that every $\nu \in S_1 \cup S_2$. Connectedness of the line now implies that S_1 and S_2 must overlap, and this is the statement 1.

REFERENCE

1. A. W. Tucker, Extensions of theorems of Farkas and Stiemke, Abstract 76, Bull. Amer. Math. Soc. vol. 56 (1950) p. 57.

Brown University and Sylvania Electronics, Needham, Massachusetts