
POLYNOMIAL IDENTITIES

J. B. ROBERTS1

In this paper we are concerned with various generalizations of cer-

tain known theorems about the splitting of finite sets of numbers into

equinumerous classes such that the sums of powers of the numbers

in a given class is independent of the class. In certain cases lower

bounds, which are quite large, are given for the number of possible

splittings. In addition we give a method which enables one to compute

these splittings with facility.

Let ti\, n2, n¡, ■ ■ ■ be a fixed sequence of integers each 2^2. Define

po=l, pi = ni, p2 = nin2, ps = nin2n3, ■ ■ ■ . Then every integer has a

unique representation in the form

(1)        n = a0 + aipi + a2p2 + • • • + akpk,        ieO,Oáa¡| ni+í.

We shall use this fact below.

Definition.

/ r—1 \ / »—1 \ r«— 1

( 2 /(»)»') * ( X) «M»') =  ¡E/(» - r[n/r])g([n/r])n'.
\ n=0 /       \ n=0 / n=0

We use [x] for the largest integer £*#. Note that n — r[n/r] and

[n/r] are just the digits in the expansion of n, 0^n<rs, in the form

n = ao+air, 0^a0O, 0^ai<s.

A short computation shows that the * operation is associative.

Theorem 1. Let «< and pi be as defined above and let the at- be those

functions of n defined by (1). Then

(»1—1 \ / nit— 1 \ pk—l

E/i(»)»') *•••*(  S /*(«)»«) -  E/i(«o) • • -fk(ak-i)n'.
n=0 / \ n=0 / n—0

Proof. The proof is by induction on k. (a) Let k = 2. Then

(r»l— 1 \ / n2—1 \ P2—1

E/i(»)«')*( E/ü{»)»*)= £/i(»-»i[»/»i])M»/»iJV-
n—0 /        \ ?i=0 / n=0

But if n = ao-\-aipi, 0^a0<ni, 0^ai<n2, then

a0 = n — pi[n/pi],       ai = [n/pi].

This proves the theorem for & = 2. (b) Suppose theorem true for

k^j—i. Then
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(ni-l \ / n,—1 \

E/i(»)»0 •■■■*( £//»)»')
n-0 / \ n-0 /

(PÍ-1-1 \        /n,-l \

S   /i(<Z0) • • •/3_i(a;_2)W'j * (^ E//(*)n«j

(W-i-1 \       /"i-I \

£   T(«),vJ*^ £/,(«)«<j

= Z /(« - ^-ih/^-iD/XtV^-i])«'
n-0

where F(n) =/i(ao) • • • fj-i(a¡-2) when ra = ao+ai£i + • • • +ay_2^y-2.

Let w = a0+ai£i+ • • • +aj-ip,--i. Then

F(n - pj-i[n/pj-i}) = /(a0 + aipi + • • • + 0,-^,-2)

= /i(flo) • ■ •/,_i(a,_2)

and

//([»/fr-d) = /y(«y-i)
and the proof is complete.

Theorem 2. Suppose ^^Zlf(n)n' = 0, ^'nZ\g(n)nt = 0 for all inte-

gers t satisfying O^t^ai, 05=/^«2 respectively. Then

( £ f(n)n) * ( £ *(»)»') = 0
\ n=0 /        \ n-0 /

for all integers t satisfying 0^/gai+a2 + l.

Proof. The * product is

-1   »-i

Z) f(ao)g(ai)(a0 + as)' = £   Jl f(ao)g(ai)(a0 + air)'
a o=0   a i=0

= X) ]E/(«o)f(«i) ¿( t)«i(«if) '
o0=0   a,=0 t-0 \K/

fc-0 \K/ \ o0-0 /   \ Oi-O /

When 0á¿^ai+a2 + l then either Og&^aior 0^/ —&^a2and there-

fore one of the two inside sums on the right vanishes. This completes

the proof.

Corollary. Suppose for each j, l^j^m, Xn-o /)■(«)»'= 0 for all

integers t satisfying 0 ̂  t ̂  a¡.    Tie»
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Pm—1

X) /l(tto)   •   '   • /m(äm-l)»'  =   0
71-0

/or all integers t satisfying

0á*Sai+ • • • +a- + (»»-l).

This corollary follows immediately from the theorem and Theorem

1.
It should be noted that the corollary remains true if for some/ the

sum zjUZa fj(n)n' does not vanish for any integral / providing we

replace a¡ by —1.

Suppose now that A = {ß0, ßi, ■ • • } is an arbitrary sequence of

complex numbers. Define An, for n given by (1), to be

An = aoßo + aißi + • • • + akßk.

Elementary algebraic manipulations involving the binomial theorem

show that if ]Cn-o/(w)wi = 0 for all integers /, O^t^a, then also

Xn«o/(wMn = 0 f°r these same t. Further this latter proposition is

equivalent to the proposition that ^2i,Zlf(n)P(x+^4n) =0 for all

polynomials P(x) of degree ^a.

These remarks and the above results prove the

Theorem 3. Let m be a positive integer and a%, • • • , am be integers

each fc—1. Suppose further Xn-o f,(n)n' = 0 for O^t^a,. Then, for

every polynomial P(x) of degree <ai+ • • • -\-am-\-m,

Pm—l

(3) £ /iOo) • • •fm(am-i)P(x + An) = 0.
71 = 0

If in Theorem 3 each function/y is periodic of period n¡ then, since

a¡ = [n/pj] (mod n¡), we may write (3) as

(4) £   UfÁ[n/pí-1])P(x + An) = 0.
n-0     j'=l

We write next a theorem, a special case of which we shall combine

with Theorem 3 to obtain some further identities.

Theorem 4. Suppose E»-o/('»)',1 = 0/w a^ integers t, O^/^cc.

Then putting /( — 1) =f(m) =0 we have

m

H (/(») - /(» - 1))»' = 0       for 0 ¡S t <t a + 1.
n-0
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Proof.

m m—1

Z (/(») - f(n - l))n> = £ f(n)(n> - (n + 1)')
n—0 n—0

m—1 1—1   / A Í—1  / A m— 1

= - Z /(») Z ( )/(»)»• = - Z     Z/(«V = o.
n-0 «=0 \S/ «_0 \J/   n-0

A special case of the result in Theorem 4 enables us to give an easy

inductive proof of the well known formula

(5) Z(-l)n(?V = °> OSofSi-1.

Indeed this formula is true for q=l and assuming its truth for q

we see, with

/( «) = (-D"(? w1)1

that

2 ((-!)"(')-(-I)-1 (    ? 1))W'=Z(-1)«(?+1)W' = 0.
n-0  \ \»/ \« —   1// n-0 \      n      /

0 á < ss ?.
If we now take each

/(») - (-D"(%~ ^

and aj = nj — 2 we deduce from (5) and Theorem 3 the

Theorem 5. For P(x) any polynomial of degree <»i+ • • • +nm — m,

p^ (ni — 1\ /nm — 1\
£ (_!)«„+.-. +am( )...( )/>(*+¿„)=0.

n-0 \      flO      / \    ßm-1   /

Specializing this result by choosing all «< = £>§: 2 gives the main

polynomial identity (Equation (7)) of [2].

If we take each/y(w) =e", where e¡ is an n¡th root of unity we see

that fj is periodic of period n¡ and Z»-o fj(n) = Zn'-o «" = 0 for

e/T^l. Hence from Theorem 3 and (4) we may write the

Theorem 6. /e/ v be the number of ei, ■ • • , em which equal 1 owd

suppose P(x) is any polynomial of degree <m — v. Then

E[n/J>0] [n/pm-il      . .
ei        • • • em i>(x + 4„) = 0.
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Specializing this result by choosing all w¿ = o=g2 gives the main

polynomial identity (Equation (1)) of [3J.

We insert a known lemma which will be used in deducing our next

result.

Lemma. // Xn-o °nXn = 0 for all qth roots of unity other than 1 then

all the Ci are equal.

Proof. A polynomial of degree q—l is determined to within a

multiplicative constant by q— 1 distinct zeros. The zeros of the given

polynomial are also zeros of the polynomial l+x+x2+ • • • +x5_1.

Hence the given polynomial is a constant times this one. Equating

coefficients gives the result.

Let now ej = e2Tsiin>i = e(s/n]), j'^1, where «'=(—1)1/2. Then if

Lm-i is the least common multiple of %\, ■ ■ • , nm we have

[n/pol [n/pw-ll /      .r-^   r      ,. 1/1
ii        ■ ■ • em = els^ WPi-i\/n,-]

= eUs/Ln-i) '£lLm-i[n/pj-i\/ni).

Define Cr to be the set of those n, 0^n^pm, for which

m

X Lro_1[»//>y-i]/wy ■ * (mod £m_i).
y=i

[n/pol [n/Pm-ll.

Then

€i •  •  • fm P(X +  A„)
,    . 71=0

(6)

=    £   e(rs/U-i) £ P(x+ An).
r=0 7ieCr

By Theorem 6 the left side of (6) is zero for P(x) any polynomial of

degree <m — v, where v, is the number of «i, • • • , wro which divide J.

Putting 5 = max v„ 0^5<Lm_i, we see that the left side of (6) is zero

for all s, 0^s<Lro_i, when P(x) is a polynomial of degree <m — v.

Hence using the lemma and (6) gives

Theorem 7. Let Cr be as defined above. Then for P(x) any poly-

nomial of degree <m — v the sum ^„ec, P(x+An) is independent of r,

0ár^L„,_i.

Specializing this result by choosing all «¿ = o^2 gives Lehmer's

theorem (see [l; 3; 4; 5; 6]).
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A number of other similar results can be derived from Theorems

5 and 6.
Theorem 7 tells us that the integers Q^n<pm can be split into

Zm_i disjoint (equinumerous) classes Cr over which the sum

Z»ecr P(x+A„) is invariant. It is natural to inquire into the number

of ways such a splitting can be accomplished. We have investigated

this question to some extent, especially in the case where all n¡ = b^ 2.

In this case we have obtained a lower bound for the number of split-

tings of 0^n<pm. This lower bound is ((b — l)!)"1. We omit the

proof of this result but shall give a method which can be used to con-

struct this number of splittings.

For the rest of this paper all wy = &^2 and i^o, $i, fan ' ' ' ls anY

sequence of functions defined over the integers each of period b.

Using the periodicity of the \pi we find by direct computation

m-l 6-1 i>m-l

(7) [ ^ t*iWx'bi  =   ^ e*o([n])+---+1(.m-i([n/i.m-1]);s.n)

<—o y—0 n—0

where e is a ôth root of unity. Defining <j>m(n) for 0 ^n <bm by

*»(») = MM) + • • • + *—id»/*—1])

we see that (7) yields a generating function for <pm(n). From this we

see immediately, for 0^a,<&,

<t>m(a0 + aj> + • • • + am_i6m_1) = \¡/0(a0) + • • • + fm_i(am-i) (mode).

If ^r is the set of n, 0^n<bm, for which

^o(ao) + • • • + ^m-i(om-i) = r (mod b)

then the proof of Theorem 7 proves that the sum there can be replaced

by Zne*rT(x+.4n).

Hence each sequence of \pi yields a splitting which can be obtained

by finding those n for which 4>m(n)=r (mod b). We proceed to outline

our method for determining these splittings.

We define strings of numbers which we denote by Si, S2, ■ • ■ .

Given two such strings 5,- and Sj we shall write SiS¿ for the string

obtained when they are juxtaposed in the order indicated. By S¡,

where r is an integer, we shall mean the string obtained from 5,- by

adding modulo b the number r to each digit of 5¿. For example if

b = 6, 5, = 501243, 5y = 450123 then

SiSj = 501243450123    and   S* = 234510.

We proceed to the construction of such a sequence of 5¿ for any
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given sequence ^,- of functions defined and with period b over the

integers.

\¿>m+l

*o(0)*.(l) • • -*o(i-D;

>m+l  =J» ■   •   m Om , M ¿   I.

Note that Si has the b digits ipo(0), • • • , \//o(b — l) and that in general

Sm has bm digits.

It is not difficult to see that the wth digit of Sm+i is nothing more

than the least non-negative residue mod b of 4>m(n). This enables us

to determine the MS- rapidly if we are given the ^¿.

As an illustration let b = 3, m = 2 and define ^o, $u ^2 by

k Mk) ii(k) *,(*)

0 0 0 0

12 12

2 12 1.

Then

Si = 021,

52 = 021 102 210,

53 = 021 102 210 210 021 102 102 210 021.

Writing 0, 1, •• -, 26 under these we see immediately that

*o= {0, 4, 8, 11, 12, 16, 19, 23, 24},

*! = {2, 3, 7, 10, 14, 15, 18, 22, 26},

*2 = {l, 5, 6, 9, 13, 17, 20, 21, 25}.

To obtain an alternative splitting take all \pi to be equal to the

identity map as in [3; 6] and obtain

Si = 012,

52 = 012 120 201,

53 = 012 120 201 120 201 012 201 012 120.

Therefore

Co = {0, 5, 7, 11, 13, 15, 19, 21, 26},

Ci = (l, 3, 8, 9, 14, 16, 20, 22, 24},

C2 = {2, 4, 6, 10, 12, 17, 18, 23, 25}.

This gives us two different splittings of 0, 1, •• -, 26 into three dis-
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tinct classes. According to our bound there are at least two more such

splittings obtainable in this way.
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Reed College

A DETERMINANT CONNECTED WITH FERMAT'S
LAST THEOREM

Put

An   =

L. CARLITZ1

I VTl.l      ^71,2   *    '    '   C-7i,7i— l

^71,71—1 1 C-71,1    *     '     '    Cn,71—2

Cn,l Cn,2     Cn,3   '   '   • 1

where the C,r are binomial coefficients. Bachmann showed that if

(1) xp + yp + zp = 0 (p \ xyz)

is solvable then Ap_i = 0 (mod p3). However Lubelski showed that for

P = 7, A„_i is divisible by p%, while E. Lehmer proved that Ap_i is

divisible by pp~2q2, where q2=(2p~1 — l)/p; also A„ = 0 if and only if

n = 6k. For references see [2].

The writer [l] has determined the residue of Ap_i (mod pv~l). The

result is that
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