POLYNOMIAL IDENTITIES
J. B. ROBERTS!

In this paper we are concerned with various generalizations of cer-
tain known theorems about the splitting of finite sets of numbers into
equinumerous classes such that the sums of powers of the numbers
in a given class is independent of the class. In certain cases lower
bounds, which are quite large, are given for the number of possible
splittings. In addition we give a method which enables one to compute
these splittings with facility.

Let 7y, 72, n3, - -+ - be a fixed sequence of integers each =2. Define
po=1, pr=m1, po=mmns, ps=mmnsns, - - - . Then every integer has a
unique representation in the form

¢)) n=ao+ a1pr + ap2+ - - - + axpr, £z0,0 = a; = niy1
We shall use this fact below.

DEFINITION.
( > f(n)n‘) . ( > g(n)nt) - 'f;ﬂn — rln/rDg(ln/r

We use [x] for the largest integer <x. Note that n—r[n/r] and
[#/r] are just the digits in the expansion of #, 0 Sn<rs, in the form
n=ao+0a17, 0=5a0<7, 0=5a:<s.

A short computation shows that the * operation is associative.

THEOREM 1. Let n; and p; be as defined above and let the a; be those
functions of n defined by (1). Then

@ ("'gﬁ(n)n') oo (i fk(n)n‘> - i filas) - - - fulaso)nt.
Proor. The proof is by induction on k. (a) Let 2=2. Then
(E fl(n)n‘) ' (}5 fz(n)n‘> =5 fitn = mln/mDialIn/myne.

n=0 n=0 n=0

But if z=a¢+a1p1, 0=5a0<n1, 0=a,<n,, then

a0 = n — pi[n/pi], ar = [n/p1].

This proves the theorem for k=2. (b) Suppose theorem true for
k<j—1. Then
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(Milfl(”)”') *ee ok (”ffj(n)n‘)

- (’:;‘:fx(ao) i) ('gfj(n)n‘)

pi—1
= Zo F(n — pian/piaDfi([n/ps1])nt
where F(n) =fi(ao) * * - fi-1(aj—2) when n=aotar1p1+ - - - +a;2pj.
Let n=ao+a1p1+ - - - +a;1pj. Then
F(n — pialn/pia]) = Flao+ arpr+ -+ - + aj-2p;-2)
= fi(ao) - - - fi-1(aj—2)
and
filln/pi-a]) = fiaj)

and the proof is complete.

THEOREM 2. Suppose Y 1-s f(n)nt=0, D i2 g(n)nt=0 for all inte-
gers t satisfying 0=t <y, 0=t =< a, respectively. Then

for all integers t satisfying 0=t Zoy+ax+1.

Proor. The * product is

i fao)g(a) (@ + awr)t = 'i 'i:;f(ao)g(al)(ao + o)t
=3 ¥ fasla E( )a’3<a1r>""
ag=0 ;=0 k=0

4 - k ! t—k
= E( ) ( Ef(%)%)( Z glaa )
k=0 ao=0 ay=0
When 0=¢<a;+a;+1 then either 0=k <03 or 0=<¢t—k =, and there-

fore one of the two inside sums on the right vanishes. This completes
the proof.

COROLLARY. Suppose for each j, 1Sj<m, D =g fi(n)nt=0 for all
integers t satisfying 0StSaj. Then
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pm—1

> fi@o) - -+ fm(@m-1)nt =

n=0
for all integers t satisfying
0st=a+ - - - +amt(m—1).

This corollary follows immediately from the theorem and Theorem
1.

It should be noted that the corollary remains true if for some j the
sum Y %Iy fi(n)nt does not vanish for any integral ¢ providing we
replace o; by —1.

Suppose now that A= {B,, B, - - - } is an arbitrary sequence of
complex numbers. Define 4,, for # given by (1), to be

An = aBo + aif1 + - - - + aibs.

Elementary algebraic manipulations involving the binomial theorem
show that if Z,,-of(n)n‘—o for all integers ¢, 0<t{=<c«, then also
> It f(n)AL=0 for these same ¢. Further this latter proposition is
equivalent to the proposition that D f(m)P(x+A,) =0 for all
polynomials P(x) of degree Zc.

These remarks and the above results prove the

THEOREM 3. Let m be a positive integer and o, - - -, an be integers
each = —1. Suppose further D %23 fi(n)nt=0 for 0<t=<aj,. Then, for
every polynomial P(x) of degree <an+ - - - +am+m,

pm—1
(3) Z f1(ao) « + * fm(@m—1) P(x + A,.) = 0.
n=0
If in Theorem 3 each function f; is periodic of period #; then, since
a;=[n/p;] (mod n;), we may write (3) as

pm—1 m

4) > I filn/pia]) P(x + 4.) = 0.

nm) j=1

We write next a theorem, a special case of which we shall combine
with Theorem 3 to obtain some further identities.

THEOREM 4. Suppose D _m-s f(n)nt=0 for all integers t, 0<t=Za.
Then putting f(—1) =f(m) =0 we have

S ) —fin— ) =0 for0SiSadtl.

n=(
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PRrooF.
io (fn) — f(n — D)t = '"i fm)(nt = (n + 1)9)
- —"i)f(n) EO(:)ﬂn)w - i( ) Z_.;fo:)ns -

A special case of the result in Theorem 4 enables us to give an easy
inductive proof of the well known formula

(5) Z( 1)"()n‘= ) 0st=<g¢g-—1

n=0

Indeed this formula is true for ¢g=1 and assuming its truth for ¢

we see, with
-1
s = =0+(* 1),
n
that

5(cor()-com (L)) w- B ()

0

n

[=]

IA
IA
o

If we now take each

sy = = (™ 1)

and a;=n;—2 we deduce from (5) and Theorem 3 the

THEOREM 5. For P(x) any polynomial of degree <n;+ - - - +np—m,

3 (= tyerteton ("‘a_o 1) .y ("”‘ - 1) Px+ 4,) = 0.

n=0 Am—1

Specializing this result by choosing all n;=b=2 gives the main
polynomial identity’ (Equation (7)) of [2].

If we take each f;(n) =¢€], where ¢; is an n;th root of unity we see
that f; is periodic of period #; and > %I} fi(n)= > %is €=0 for
¢;#1. Hence from Theorem 3 and (4) we may write the

THEOREM 6. Let v be the number of €, + « -, €n Which equal 1 and
suppose P(x) is any polynomial of degree <m—v. Then

P2l fn/p0l (I/om ]

€ P(x+ A4.) = 0.

n=0
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Specializing this result by choosing all #;=b2=2 gives the main
polynomial identity (Equation (1)) of [3].

We insert a known lemma which will be used in deducing our next
result.

LemMA. If D 428 c,x"=0 for all gth roots of unity other than 1 then
all the c; are equal.

ProoF. A polynomial of degree ¢—1 is determined to within a
multiplicative constant by ¢—1 distinct zeros. The zeros of the given
polynomial are also zeros of the polynomial 14x+4x24 - - - 4x971,
Hence the given polynomial is a constant times this one. Equating
coefficients gives the result.

Let now e =e™i" =¢(s/n;), j=1, where i=(—1)/2 Then if

L., is the least common multiple of n,, - - -, #,, we have
[ /p0) tn/pm—1] e
—
€ o Em = e(-‘ > [”/Pi—l]/"i)
j=1

(/200 3= Lmsl/ 1l 3)-

=1

Define C, to be the set of those 7, 0 <% =< p.,, for which

3 Lo/ pss) /s = 7 (mod Ln_s).

J=1
Then
e e 44,
(6) ne=0 s
= ;o €(rs/ Lm—1) nér P(x+ 4,).

By Theorem 6 the left side of (6) is zero for P(x) any polynomial of
degree <m —v, where v, is the number of #,, - - -, #,, which divide s.
Putting s=max »,, 0S5 <L,1, we see that the left side of (6) is zero
for all s, 0=s<L,-1, when P(x) is a polynomial of degree <m—7.
Hence using the lemma and (6) gives

THEOREM 7. Let C, be as defined above. Then for P(x) any poly-
nomial of degree <m—% the sum Y nec, P(x+A,) is independent of 7,
0 § r _S_ Lm_l.

Specializing this result by choosing all #,=b=2 gives Lehmer’s
theorem (see [1;3;4;5;6]).
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A number of other similar results can be derived from Theorems
5 and 6.

Theorem 7 tells us that the integers 0 =% <p, can be split into
L, disjoint (equinumerous) classes C, over which the sum
> sec, P(x+A4.,) is invariant. It is natural to inquire into the number
of ways such a splitting can be accomplished. We have investigated
this question to some extent, especially in the case where all #n;=02=2.
In this case we have obtained a lower bound for the number of split-
tings of 0=#<p, This lower bound is ((b—1)!)". We omit the
proof of this result but shall give a method which can be used to con-
struct this number of splittings.

For the rest of this paper all ;=b=2 and o, ¥1, ¥s, + - -+ is any
sequence of functions defined over the integers each of period b.
Using the periodicity of the ¥; we find by direct computation

m—1 b—1 R !
©) II 3 enstoxiv® = 3 ebotinl+ - Himer(In/6™ Hgn,
=0 j=0 n=0

where € is a bth root of unity. Defining ¢,(n) for 0 =<n <b™ by
¢n(n) = ¥o([n]) + - - - + ¥m_as([n/bm1])

we see that (7) yields a generating function for ¢,(#). From this we
see immediately, for 0 <a;<b,

ém(do+ aid + - - - + am_1b™") = Yo(a0) + -+ + + ¥m-1(@m-1) (modd).
If ¥, is the set of #, 0 <#n <b™, for which
lpO(aO) + -4+ wm—l(am—-l) =7 (mod b)

then the proof of Theorem 7 proves that the sum there can be replaced
by 2new, P(x+4.).

Hence each sequence of ¥; yields a splitting which can be obtained
by finding those # for which ¢.(%) =7 (mod b). We proceed to outline
our method for determining these splittings.

We define strings of numbers which we denote by Sy, S, - - -
Given two such strings S; and S; we shall write S;S; for the string
obtained when they are juxtaposed in the order indicated. By Sj,
where 7 is an integer, we shall mean the string obtained from S; by
adding modulo b the number 7 to each digit of S;. For example if
b=6, S;=>501243, S;=450123 then

S:S; = 501243450123 and Sf- = 234510.

We proceed to the construction of such a sequence of S; for any
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given sequence ¥; of functions defined and with period b over the
integers.

®) { S1= Yo(0)Yo(1) - - - Yo(d — 1);
oy = Sim(O) o an,..(b—l), m= 1
Note that S; has the b digits ¥0(0), - - -, ¥o(b—1) and that in general

Sm has b™ digits.

It is not difficult to see that the nth digit of Sn41 is nothing more
than the least non-negative residue mod b of ¢.(n). This enables us
to determine the ¥, rapidly if we are given the ¢,.

As an illustration let =3, m =2 and define y,, {1, ¥2 by

k Yo(k) Yi(k) ¥a(k)
0 0 0 0
1 2 1 2
2 1 2 1.
Then
Sy = 021,

S = 021 102 210,
Ss = 021 102 210 210 021 102 102 210 021.
Writing 0, 1, - + -, 26 under these we see immediately that
¥, = {0, 4, 8, 11, 12, 16, 19, 23, 24},
¥, = {2, 3, 7, 10, 14, 15, 18, 22, 26},
¥, = {1, 5, 6, 9, 13, 17, 20, 21, 25}.
To obtain an alternative splitting take all ¥; to be equal to the
identity map as in [3; 6] and obtain
S1 = 012,
S = 012 120 201,
Ss = 012 120 201 120 201 012 201 012 120.
Therefore
Co= {0, 5, 7, 11, 13, 15, 19, 21, 26},
Ci= {1, 3, 8, 9, 14, 16, 20, 22, 24},
C:= {2, 4, 6, 10, 12, 17, 18, 23, 25}.
This gives us two different splittings of 0, 1, - - -, 26 into three dis-
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tinct classes. According to our bound there are at least two more such
splittings obtainable in this way.
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REED COLLEGE

A DETERMINANT CONNECTED WITH FERMAT'S
LAST THEOREM

L. CARLITZ!
Put
1 Cn,l Cn.2 ¢t Cn,n—l
An _ Cn,”_l 1 Cn.l ot Cn.n—Z ,
Cai Cp2 Cpnz--- 1
where the C, . are binomial coefficients. Bachmann showed that if
(1) xP 4 yp + 27 = 0 (p | xy2)

is solvable then A,_;=0 (mod $*). However Lubelski showed that for
p=7, A,y is divisible by 8, while E. Lehmer proved that A, is
divisible by p?~2g,, where ¢.= (2¢"1—1)/p; also A,=0 if and only if
n=6k. For references see [2].

The writer [1] has determined the residue of A,_; (mod 7). The
result is that
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