TOPOLOGICAL AND MEASURE THEORETIC PROPERTIES OF ANALYTIC SETS

MAURICE SION

- 1. Introduction. G. Choquet's definition [1] of an analytic set in a topological space as the continuous image of a $K_{\sigma\delta}$ has proved to be a very fruitful one. In this paper we study some properties of analytic sets which are not necessarily included in a K_{σ} . In particular, we prove that an analytic set is Lindelöf, capacitable, measurable and can be approximated in measure by compact sets from within for large classes of capacities and measures.
 - 2. Topological properties of analytic sets.
- 2.1. DEFINITIONS. Our definition of an analytic set below is a slight modification of Choquet's in that we do not impose any conditions on X.
 - 1. ω denotes the set of all non-negative integers.
 - 2. K(X) denotes the family of compact sets in X.
 - 3. $\mathfrak{F}(X)$ denotes the family of closed sets in X.
- 4. A is analytic iff A is the continuous image of a $K_{\sigma\delta}(X)$ for some X.
 - 5. A is Souslin H iff

$$A = \bigcup_{s \in S} \bigcap_{n \in \omega} E(s_0, \cdots, s_n)$$

where S is the set of all sequences of non-negative integers and $E(s_0, \dots, s_n) \in H$ for every $s \in S$ and $n \in \omega$.

- 6. A is Lindelöf iff every open covering of A has a countable subcovering of A.
 - 7. \overline{A} denotes the closure of A.
- 2.2. LEMMA. Let f be a continuous function on D to a topological space X and, for every $n \in \omega$, let A_n be compact, $A_{n+1} \subset A_n$, $\bigcap_{n \in \omega} A_n \subset D$, $B_n = f(D \cap A_n)$. Then
- (i) if U is open in X and $f(\bigcap_{n\in\omega} A_n)\subset U$ then, for some $n\in\omega$, $B_n\subset U$,
 - (ii) if X is Hausdorff then

$$f\left(\bigcap_{n\in\omega}A_n\right)=\bigcap_{n\in\omega}B_n=\bigcap_{n\in\omega}\overline{B}_n.$$

Presented to the Society, January 20, 1960; received by the editors January 9, 1960.

PROOF. Let $C' = \bigcap_{n \in \omega} A_n$ and C = f(C'). Suppose U is open in X and $C \subset U$. Let $U' = f^{-1}(U)$. Then U' is open in D and $C' \subset U'$. Hence, for some $n \in \omega$, $D \cap A_n \subset U'$ and

$$B_n = f(D \cap A_n) \subset f(U') = U.$$

Next, suppose X is Hausdorff and $y \in C$. Since C' is compact so is C. Thus, there exists an open set U such that $C \subset U$ and $y \in \overline{U}$. Then, by part (i), for some $n \in \omega$, $\overline{B}_n \subset \overline{U}$ and $y \in \overline{B}_n$. Thus,

$$\bigcap_{n\in\omega}\overline{B}_n\subset C.$$

On the other hand, we always have

$$C \subset \bigcap_{n \in \omega} B_n \subset \bigcap_{n \in \omega} \overline{B}_n.$$

2.3. THEOREM. If E is analytic then E is Lindelöf.

PROOF. Since E is the continuous image of a $K_{\sigma\delta}(X)$, for some X, let

$$D = \bigcap_{i \in \omega} \bigcup_{j \in \omega} d(i, j),$$

where the d(i, j) are compact, f be continuous on D and E = f(D). Suppose F is an open covering of E that has no countable subcovering of E. Then, by recursion, we define a sequence k with $k_i \in \omega$ such that for any $n \in \omega$, no countable subfamily of F covers

$$f\bigg(D \cap \bigcap_{i=0}^n d(i, k_i)\bigg).$$

To this end, we observe that, since

$$E = \bigcup_{j \in \omega} f(D \cap d(0, j)),$$

there exists $k_0 \in \omega$ such that no countable subfamily of F covers $f(D \cap d(0, k_0))$. Having defined k_i for $i = 0, \dots, n$, since

$$f\left(D \cap \bigcap_{i=0}^{n} d(i, k_{i})\right) = \bigcup_{j \in \omega} f\left(D \cap \bigcap_{i=0}^{n} d(i, k_{i}) \cap d(n+1, j)\right)$$

we see that there exists $k_{n+1} \in \omega$ such that no countable subfamily of F covers

$$f\left(D \cap \bigcap_{i=0}^{n+1} d(i, k_i)\right).$$

Let

$$A_n = \bigcap_{i=0}^n d(i, k_i),$$

$$B_n = f(D \cap A_n),$$

$$C = f(\bigcap_i A_n).$$

Since

$$\bigcap_{n\in\omega}A_n=\bigcap_{i\in\omega}d(i,\,k_i)\subset D$$

and C is compact, let U be the union of a finite subfamily of F such that $C \subset U$. Then, by Lemma 2.2, for some $n \in \omega$, $B_n \subset U$ contradicting the fact that B_n could not be covered by a countable subfamily of F.

- 2.4. COROLLARY. If E is analytic in a metric space then E is separable.
- 2.5. THEOREM. If E is analytic in a Hausdorff X then E is Souslin $\mathfrak{F}(X)$.

PROOF. Let E = f(D) where f is continuous on D,

$$D = \bigcap_{i \in \omega} \bigcup_{j \in \omega} d(i, j),$$

with d(i, j) compact. For every (n+1)-tuple (k_0, \dots, k_n) with $k_i \in \omega$, let

$$B(k_0, \dots, k_n) = f\left(D \cap \bigcap_{i=0}^n d(i, k_i)\right)$$

so that $\overline{B}(k_0, \dots, k_n) \in \mathfrak{F}(X)$. If S denotes the set of all sequences k with $k_i \in \omega$, we shall show that

$$E = \bigcup_{k \in S} \bigcap_{n \in \omega} \overline{B}(k_0, \cdots, k_n).$$

Indeed, since

$$D = \bigcup_{k \in S} \bigcap_{i \in \omega} d(i, k_i)$$

we have

$$E = \bigcup_{k \in S} f\left(\bigcap_{i \in \omega} d(i, k_i)\right)$$

and for every $k \in S$

$$f\left(\bigcap_{i\in\omega}d(i,\,k_i)\right)=f\left(\bigcap_{n\in\omega}\bigcap_{i=0}^nd(i,\,k_i)\right)=\text{ (by 2.2)}$$

$$=\bigcap_{n\in\omega}f\left(D\bigcap\bigcap_{i=0}^nd(i,\,k_i)\right)=\bigcap_{n\in\omega}\overline{B}(k_0,\,\cdots,\,k_n).$$

- 2.6. COROLLARY. If E is a metric space and analytic then E can be imbedded in a complete separable metric space X and, for every such X, E is Souslin $\mathfrak{F}(X)$. Thus, in this case, E is an absolute analytic set in the classical sense and hence it is the continuous image of the set of irrationals. (See [3] for results on analytic sets in separable metric spaces.)
- 2.7. REMARK. Theorem 2.5 was first proved by the author in [5]. The proof we give here is shorter and simpler. Corollary 2.6 was first obtained by G. Choquet [2].
- 3. Capacitability of analytic sets. We consider here only special kinds of capacities. For more general definitions and results about capacities see G. Choquet [1].
- 3.1. DEFINITIONS. 1. ϕ is a *capacity* on X iff ϕ is a function on K(X) to the reals (including $\pm \infty$) such that: if A and B are compact and $A \subset B$ then $\phi(A) \leq \phi(B)$; if $\phi(A) < a$ then there exists an open set U such that $A \subset U$ and, for every compact $A' \subset U$, $\phi(A') < a$.
 - 2. If ϕ is a capacity on X then for any $A \subset X$ we let

$$\phi_*(A) = \sup\{t: t = \phi(C) \text{ for some compact } C \subset A\}$$

and

$$\phi^*(A) = \inf\{t: t = \phi_*(U) \text{ for some open } U \supset A\}.$$

3. If ϕ is a capacity on X then A is ϕ -capacitable iff

$$\phi_*(A) = \phi^*(A).$$

4. If ϕ is a capacity on X and $E \subset X$ then ϕ is of order (1a) on E iff, for every sequence A with $A_i \subset A_{i+1} \subset E$, we have

$$\phi^* \left(\bigcup_{i \in \omega} A_i \right) = \lim_i \phi^*(A_i).$$

(This is a slight extension of Choquet's definition of a capacity alternating of order $\mathfrak{A}_{1,a}$.)

3.2. THEOREM. If E is analytic in X, ϕ is a capacity on X of order (1a) on E then E is ϕ -capacitable.

PROOF. Let E = f(D) where f is continuous on D,

$$D = \bigcap_{i \in \omega} \bigcup_{j \in \omega} d(i, j),$$

the d(i, j) are compact, and $d(i, j) \subset d(i, j+1)$ for every $i \subseteq \omega$, $j \subseteq \omega$. In order to see that $\phi_*(E) = \phi^*(E)$, we let $a < \phi^*(E)$ and show that, for some compact $C \subset E$, $\phi(C) \ge a$. By recursion, we define a sequence k with $k \in \omega$ as follows. Since

$$E = \bigcup_{j \in \omega} f(D \cap d(0, j))$$

let $k_0 \subseteq \omega$ be such that

$$a < \phi^*(f(D \cap d(0, k_0))).$$

Having k_0, \dots, k_n so that

$$a < \phi^* \left(f \left(D \cap \bigcap_{i \in 0}^n d(i, k_i) \right) \right),$$

since

$$f\bigg(D \cap \bigcap_{i=0}^{n} d(i, k_{i})\bigg) = \bigcup_{j \in \omega} f\bigg(D \cap \bigcap_{i=0}^{n} d(i, k_{i}) \cap d(n+1, j)\bigg),$$

let k_{n+1} be such that

$$a < \phi^* \bigg(D \cap \bigcap_{i=0}^{n+1} d(i, k_i) \bigg).$$

Set

$$A_n = \bigcap_{i=0}^n d(i, k_i),$$

$$C = f\left(\bigcap_{i=1}^n A_i\right).$$

Then, since

$$\bigcap_{n\in\omega}A_n=\bigcap_{i\in\omega}d(i,\,k_i)\subset D,$$

we see that C is compact, $C \subset E$ and, by 2.2, for any open set $U \supset C$ there exists $n \in \omega$ such that $f(D \cap A_n) \subset U$. Hence

$$a < \phi^*(D \cap A_n) \leq \phi^*(U).$$

Thus, $a \le \phi^* C$ and, since compact sets are ϕ -capacitable, we have $\phi(C) = \phi^*(C) \ge a$.

- 4. Measurability of analytic sets.
- 4.1. DEFINITIONS. 1. μ is a Carathéodory measure on X iff μ is a function on the family of all the subsets of X to the non-negative reals (including ∞) such that $\mu(0) = 0$ and if

$$A \subset \bigcup_{n \in \omega} B_n \subset X$$

then

$$\mu(A) \leq \sum_{n \in u} \mu(B_n).$$

2. If μ is a Carathéodory measure on X and $A \subset X$ then A is μ -measurable iff for every $T \subset X$

$$\mu(T) = \mu(T \cap A) + \mu(T - A).$$

- 3. M(X, E) will denote the set of all Carathéodory measures on X such that:
- (i) for every $A \subset E$ there is a μ -measurable A' with $A \subset A'$ and $\mu(A) = \mu(A')$.
 - (ii) all compact subsets of E are μ -measurable.
- (iii) if A is compact, $A \subset E$, $T \subset X$, $\epsilon > 0$ then there exists an open set U such that $A \subset U$ and $\mu(T \cap U) \leq \mu(T \cap A) + \epsilon$.
- 4.2. THEOREM. If E is analytic in X, $\mu \in M(X, E)$, $a < \mu(E)$ then there exists a compact C such that $C \subset E$ and $\mu(C) > a$.

PROOF. For any sequence A such that $A_i \subset A_{i+1} \subset E$ we have

$$\mu\left(\bigcup_{i\in\omega}A_i\right)=\lim_i\mu(A_i).$$

Let E = f(D) where f is continuous on D,

$$D = \bigcap_{i \in \omega} \bigcup_{j \in \omega} d(i, j),$$

the d(i, j) are compact and $d(i, j) \subset d(i, j+1)$. As in the proof of 3.2, by recursion we can define a sequence k with $k_i \in \omega$ such that, for any $n \in \omega$:

$$a < \mu \left(f \left(D \cap \bigcap_{i=0}^{n} d(i, k_i) \right) \right).$$

Let

$$A_n = \bigcap_{i=0}^n d(i, k_i),$$

$$C = f\left(\bigcap_{i=1}^n A_i\right)$$

then C is compact, $C \subset E$ and, by 2.2, for any open set $U \supset C$ there exists $n \in \omega$ such that $f(D \cap A_n) \subset U$ and therefore

$$a < \mu(f(D \cap A_n)) \leq \mu(U).$$

Thus, $\mu(C) \ge a$.

4.3. THEOREM. If E is analytic in X, $\mu \in M(X, E)$ then E is μ -measurable.

PROOF. Let $T \subset X$ and $\mu(T) < \infty$. We define a $n \in \omega$ measure ν on X by letting $\nu(A) = \mu(T \cap A)$ for every $A \subset X$.

Clearly $\nu \in M(X, E)$ and $\nu(E) < \infty$. Then, by 4.2, there exists a $C \subset E$ such that C is a $K_{\sigma}(X)$ and is ν -measurable and $\nu(C) = \nu(E)$, so that $\nu(E-C) = 0$. Thus, E-C is ν -measurable and hence E is ν -measurable and

$$\mu(T) = \nu(T) = \nu(T \cap E) + \nu(T - E) = \mu(T \cap E) + \mu(T - E).$$

- 4.4. COROLLARY. If X is a complete separable metric space, E is closed in X, and $\mu \in M(X, E)$ then E is μ -measurable.
- 4.5. Remark. If X is Hausdorff, E is analytic in X, μ is a Carathéodory measure on X such that closed sets are μ -measurable, then E is μ -measurable and

$$\mu(E) = \sup_{C \in K(X); C \subset E} \mu(C)$$

since in this case E is Souslin $\mathfrak{F}(X)$. (See e.g. Saks [4].)

- 4.6. REMARK. In the proof of Theorem 4.2 we do not use all the properties of a measure μ in M(X, E). Part (iii) in the definition of M(X, E) may be replaced by
- (iii)' if A is compact, $A \subset E$, $\epsilon > 0$ then there exists an open set U such that $A \subset U$ and $\mu(U) \leq \mu(A) + \epsilon$ without affecting the validity of 4.2.

For the proof of 4.3 however (iii)' is not enough, but we may replace (iii) by

(iii)" if A is compact, $A \subset E$, $\epsilon > 0$, $T \subset X$ and $\mu(T) < \infty$ then there exists an open set U such that $A \subset U$ and $\mu(T \cap U) \leq \mu(T \cap A) + \epsilon$.

Part (iii) will be satisfied if we have (iii)' and, for every compact $A \subset E$, $\mu(A) < \infty$, or if we have

(iii)"' if A is compact, $A \subset E$, $\epsilon > 0$ then there exists an open set U such that $A \subset U$ and $\mu(U-A) < \epsilon$.

BIBLIOGRAPHY

- 1. G. Choquet, *Theory of capacities*, Ann. Inst. Fourier, Grenoble vol. 5 (1953-54) pp. 131-295.
- 2. ——, Ensembles K-analytiques et K-sousliniens, Ann. Inst. Fourier, Grenoble vol. 9 (1959) pp. 75-81.
 - 3. F. Hausdorff, Mengenlehre, 3rd rev. ed., New York, Dover, 1944.
- 4. S. Saks, *Theory of the integral*, Warsaw, Monographie Matematyczne, 1937, p. 50.
- 5. M. Sion, On analytic sets in topological spaces, Trans. Amer. Math. Soc. vol. 96 (1960) pp. 341-354.

University of California, Berkeley