THE WEIERSTRASS CONDITION FOR MULTIPLE INTEGRAL
VARIATIONAL PROBLEMS INVOLVING
HIGHER DERIVATIVES!

LAWRENCE M. GRAVES

1. Introduction. We consider the problem of minimizing a multiple
integral

I =f0 f(x, 3, Dz)dx =f .. ff(x, 2, Dz)dx, - - - dx,,

where x=(x1, - * +, %), 2=(21, * * *, 24), 2 is a function of x, and
Dz, denotes the various partial derivatives of z with respect to the
x; up to order .. When it is necessary to be more explicit, we shall let
1 denote an n-dimensional vector with nonnegative integer coordi-
nates, and write

. n .
D' =] pi.
=1
We set |i| = 2;1;, and if || =, denote Diz by p}. These are the
derivatives of z; of the highest order that appear.

It is supposed that each 2; and its derivatives up to order v —1 are
continuous on a fixed domain G and take prescribed boundary values
on the boundary G* of G, and that the derivatives of 2 of order v
are piecewise continuous. We assume that the integrand f is continu-
ous and has continuous partial'derivatives with respect to the argu-
ments 2}, for points (x, 3, Dz) interior to a domain 7. In the Weier-
strass &-function, only the arguments p} are varied. Hence we shall
define Dz+P by the formula

(Dz + P)i =Dn for i <wm

=Du+ P, for i = w,

and assume for simplicity that the domain T is such that (x, z, Dz P)
is in T whenever (x, 2, Dz) is in T. Then we define

8(x7 2, DZ, Dz + P) = f(x) 2, Dz + P) _f(x) 3, DZ) - E Pif,ki(x,z,Dz),
1,k
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where the summation index % runs from 1 to ¢, and ¢ varies over the
set |i| =w.
We shall show that if I is a minimum then

&(x,3, Dz, Dz+ P) =2 0
whenever P has the form
6 Py =G I ()7,
=1

where Cj and «; are arbitrary.

We may restrict attention to a point x of G near which all deriva-
tives of z which appear are continuous, and consider only variations
¢ of z which vanish outside a neighborhood of x. Then if we put

f(x, ¢, Dt) = f(x,2+ ¢, Dz + D¢) — f(x,2, D2),
16) = [ Jas,

we see that in (x, {)-space, the minimizing manifold is {=0, and
f(x, 0, 0)=0. By a translation we may also suppose that the point x
under consideration is the origin. We replace { by z and f by f, and
understand in the proofs that any argument of f or its partial deriva-
tives which is not written is zero. In §2 we give the proof for the case
g=2,n=1, =2, and in §3 treat the general case. The method of
proof is an extension of that given by the author for the case when only
first derivatives appear.?

2. A special case. We consider here an integrand
f(x7 21, 22, Dz, Dz,, D2Z2),

where D?;, stands for all the second derivatives D.;D,,2;, and no
derivatives appear which are of higher order than those indicated. Let

Lo = X ajx),
Ju=1
where for convenience « is chosen as a unit vector, and for a small
b>0 and |x| <0 let
2 271/2 2,1/2
¢=0+L-|«]]T"-[1-08]",
where l x I denotes the Euclidean length of the vector x. (Note that
t See Duke Math. J. vol. 5 (1939) pp. 656-660.
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|i| was defined differently.) Then ¢ has bounded partial derivatives
of all orders, and ¢ and its first partial derivatives approach zero uni-
formly with b. Let 1=¢€>€e1>€>¢=0, and set

L1 = Lo + (61-"' 1)¢,
Ly = Lo+ (e — 1)o,
L3 = Lo - ¢.

Then the loci Lg=0, (3=0, 1, 2, 3), bound three adjacent domains
Ry, Ry, R; in x-space, defined by

) Ry = [2] Lsy1 < 0 < Lg).

If V=V(b) denotes the volume of R=Ry+R;+R;, then the volume
of Rsg is Vs=(es—esr1) V, as is readily verified by considering the
special case oy =1, a;=0 for j>1. Also V tends to zero with b.

The variations of the minimizing manifold =0 are constructed as
follows. Let A0, A20 be arbitrary constants, and let Ay, A, A2
denote functions of €, €, to be determined. Set

2y = AL on R,
= AyoLo+ Aunl,s on R; + R,
2 = AzoLﬁ on R,,

= AzoLtz) + AZlLi on Ry,

2 2 2
= AgLo+ AnL; + AsL, on Ry,
2, = 33 = 0 outside R.
Then 2z; is continuous except possibly along L;=0, and 2, and its
first partial derivatives are continuous except possibly along L;=0.
Sufficient conditions for the required continuity along L;=0 are
A+ adn =0,
2 2
3) Az + 142 + €422 = 0,
Ay + €1A2; + e2d2 = 0,
since Ly=¢, Li=e&¢, Ly=exp on L;=0.

Now when b tends to zero, so do ¢, each Lg, 2, 2;, and each D, ¢,
and hence

D,ij —> Dszo = ay,
D.,Ls—0,
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D,,D,_,L; — 2aj0tm,
D.zy— Ape;  on Ry,
— (4w + An)e; on R; + R,,
D22 — 0, |
D,,D,,z: — 24 z000m on R,,
— 2(A2 + A2)ajam on R,
— 2(Az0 + Aoy + Az)ajam on R,.
Since
1—¢ €1 — €

fix +

Vo Jr, 1

! fix + = sa
P X —_— y
% 2 % ?

2Y Ry
we find from I(0) =0=minimum of I(b) that

0= (1 — e)f(Aroej, 24 200500m)
4 : + (a1 — e)f[(A10 + Ai)ay, 2(A20 + Asi)aam]
+ ef[(410 + An)aj, 2(420 + A2 + A)ajom).?

This inequality may be regarded as a generalized form of the Weier-
strass condition, in which no partial derivatives of the integrand f
appear. We obtain the ordinary form of the condition by dividing by
(1 —¢) and letting € tend to one. In order to evaluate this limit we
need the derivatives 47;, 45, and A% of Au, A2 and Az with respect
to & at ee=1. Let Mg be the cofactor of sg in the determinant

So S1 S2

1 a €]
2 2

1 €1 €2

Then from the equations (3),
A2l = A20MI/M0y A22 = A20M2/M0-
Also at =1, M= — M,, M,=0, and

o M, M, o M, M,

9 My Mo,  de My M,

Ay = AzoM(,)/Mo, Ay = ApM3/M,, Aty = A,
dio+ 41 =0 Ag + A21=0, Ao+ A+ 422 =0.

3 Here the arguments x, 21, 2, D2 of f, which are all zero, have been omitted.
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In this way we obtain from (4) the inequality
0 é f(Amaj, 2Azoa,~a,,.)

+ (éz - 1)[ meiAwa,- + prz’-”'ZAzoM(’)ajam/Mo]
J jm

- [ 2 foudoes + 25 foum2As(Mo+ Mz’)aiam/MO]-
F) im

Now at e=1, (1 —e) M{ +e(M{ + M{)= M,, so this becomes
0 = f(Awe, 2420iam) — 2 fm;A1005 — 2 frrin2A20iom
J jm

or

0 =< f(py, p2) — Z P1ifo; — Z D2imf p3jms
J I m

where p1; =410, pajm=2A20aj0m, and the arguments of the partial
derivatives of f are those along the minimizing manifold 2;=2.=0.

3. The general case. We let u denote the maximum », and select
€g satisfying

1=eo>€1> "‘>€,,>€,.+1=0.
With L, and ¢ chosen as in §2, we set
Lg = Lo+ (¢ — 1)¢.

There are now u+1 domains Rs defined by (2), and the domain R
which is their union is defined by the inequality 0 <L¢<¢. On Rz we
set

A
2 = E AkaL:k,

o=0
where \ is the lesser of B and vk, Ao is arbitrary, and the remaining
Ay, are to be determined as multiples of Ao Outside of R we set
z=0. The functions 2z and their partial derivatives up to order
vi—1 are obviously continuous along the manifolds Lg=0 for
B=0,1, - - -, u. To assure the required continuity along the mani-
fold L,1=0, it is sufficient to require that the A;, satisfy the equa-
tions

vk »
ZA);,€¢=0, p=l,---,vk,

om0
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as may be verified by observing that when L,,1=0, L,=¢,4, DL;=q,
DL,=DLy+(e,—1)D¢, D2L,= (e,—1)D?p, etc. Hence we take
Ave = AroMie/Mio,

where M, is the cofactor of s, in the determinant

S0 S1 S2° Sy
l €1 €2 €y
2 2

.........

When b tends to zero, each 2z, with its derivatives up to order v —1,
tends to zero, and for ]1' =y, Dz, tends to pis on Rg, where

) n R i ; A
(5)  prs=w! [1(a) "2 4Ake = Bi' Y, Are = BiAro 2, Mo/ Mio.
j=1 o=0 o=0 o=0
As in §2 we may write

I L €g— €
S E 8 8+1 fdx,
V =0 Ve Rg

and derive as before the inequality

©) 0< 620 (o5 — esen)f(P9).

Then we divide (6) by (1—e¢) and let € tend to unity. In order to
evaluate the result we observe the following relations.

If in the determinant A we put so=s1=1, s,=¢, for ¢>1, we find
by differentiating the expansion of A on the first row that

A IMro Tk oM,

+Z€a

Ee—l dex o=2 dey

Q)

By first subtracting the second row from the first and then differen-
tiating, we find
A
8 — = — M.
651
At e=1, we find

O] My = — My, M =0 for 8> 1,
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0 M 1 WMy
dag My Mi Oea ’
d My 1 M

— = forg > 1.
0es Mo M dea 8

9 ¢« Ao 9 [ A ]
10 — == B —_— M M .|,
(10) v prs = By TN R + E &
[ a b
2 (&8 — ess1) —[Mko + > Mu]
=1 de1 o=2
(11) ,
F) &
= _[Mko + Z eaMk.'] = Mko.
aE], =
The last equality follows from (7), (8) and (9). So from (6) we have
i L I
0 < f(Bedro) — 2 (&8 — ep41) 22 foi — Pao
B=1 k. 3

= f(Bidr) — X Bidrofoi(0),
k,:

with the help of (10) and (11). Since by (5)
B = n! IT (@),
J=1

and since we have assumed f(0) =0, the result has the form given in

§1.
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