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1. Introduction. We consider the problem of minimizing a multiple

integral

1=1   f(x, z, Dz)dx = I    • • •   I f(x, z, Dz)dxi ■ ■ ■ dx„,

where x=(xi, • • • , xn), z=(zi, ■ • • , z8), z is a function of x, and

Dzk denotes the various partial derivatives of z* with respect to the

Xj up to order vk. When it is necessary to be more explicit, we shall let

i denote an w-dimensional vector with nonnegative integer coordi-

nates, and write

d{ = n d%.

We set | ¿| = 2^j ij, and if |i| =vk, denote D'zk by p\. These are the

derivatives of zk of the highest order that appear.

It is supposed that each zk and its derivatives up to order vk — 1 are

continuous on a fixed domain G and take prescribed boundary values

on the boundary G* of G, and that the derivatives of zk of order vk

are piecewise continuous. We assume that the integrand / is continu-

ous and has continuous partial'derivatives with respect to the argu-

ments p\, for points (x, z, Dz) interior to a domain T. In the Weier-

strass £-function, only the arguments p\ are varied. Hence we shall

define Dz+P by the formula

(Dz + P)\ = D\k       for | * |   <vk

= D\k + Pk       for | i |   = vk,

and assume for simplicity that the domain Fis such that (x, z, Dz+P)

is in T whenever (x, z, Dz) is in T. Then we define

£(x, z, Dz, Dz+P)= f(x, z, Dz + P)- f(x, z, Dz) - £ P\fp¿(x,z, Dz),

Received by the editors November 23, 1959.
1 This work was supported by the Office of Ordnance Research under Contract No.

DA-11-022-ORD-1833.

750



VARIATIONAL PROBLEMS INVOLVING HIGHER DERIVATIVES 751

where the summation index k runs from 1 to q, and i varies over the

set f*| =Vk-
We shall show that if 7 is a minimum then

8(x, z, Dz, Dz + P) ^ 0

whenever P has the form

(i) pí = ck n («if1,
;-i

where Ck and a¡ are arbitrary.

We may restrict attention to a point x of G near which all deriva-

tives of z which appear are continuous, and consider only variations

f of z which vanish outside a neighborhood of x. Then if we put

/(x, f, Df) = f(x, z + f, Dz + Df) - /(*, z, Dz),

/(f) = j 'fax,

we see that in (x, f)-space, the minimizing manifold is f = 0, and

/(x, 0, 0) =0. By a translation we may also suppose that the point x

under consideration is the origin. We replace f by z and / by/, and

understand in the proofs that any argument of/ or its partial deriva-

tives which is not written is zero. In §2 we give the proof for the case

g = 2, vi=\, v2 = 2, and in §3 treat the general case. The method of

proof is an extension of that given by the author for the case when only

first derivatives appear.2

2. A special case. We consider here an integrand

f(x, Si, z2, Z>zi, Dz2, D2z2),

where D2z2 stands for all the second derivatives DXjDXmz2, and no

derivatives appear which are of higher order than those indicated. Let

n

Lo  =   ¿_l aiXJ>
1-1

where for convenience a is chosen as a unit vector, and for a small

&>0and |x| gilet

ri  i  r2     I   i2i1/2     ri     j.2i1/24> = [1 + Lo -  | x| J     - [1 - b J    ,

where |x| denotes the Euclidean length of the vector x. (Note that

s See Duke Math. J. vol. 5 (1939) pp. 656-660.
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\i\ was defined differently.) Then 0 has bounded partial derivatives

of all orders, and 0 and its first partial derivatives approach zero uni-

formly with b. Let 1 = eo>€i>t2>€3 = 0, and set

Li = Lo+ (ei- 1)0,

¿2  =   ¿0 +   («2  —   1)0,

L3 = Lo — 0.

Then the loci Lß = 0, (ß = 0, 1, 2, 3), bound three adjacent domains

Ro, Ri, R2 in x-space, defined by

(2) Re= [x| Lß+1 < 0 < Lß].

If V— V(b) denotes the volume of R — R0+R1+R2, then the volume

of Rß is Vß = (e,3 — €ß+i) V, as is readily verified by considering the

special case «i= 1, ay = 0 for/> 1. Also V tends to zero with b.

The variations of the minimizing manifold z = 0 are constructed as

follows. Let Aio, -<42o be arbitrary constants, and let An, A2i, A22

denote functions of €1, e2, to be determined. Set

Zi = ^4ioLo on Ro,

= AioLo+AnLi       onRi + R2,

2

z2 = A20Lo on R0,

2 2

= ^2oL0 + ^2i¿i        on Ri,

2 2 2

= A 20Lo + A2iLi + A22L2        on R2,

Zi = z2 = 0 outside R.

Then Zi is continuous except possibly along L3 = 0, and z2 and its

first partial derivatives are continuous except possibly along ¿3 = 0.

Sufficient conditions for the required continuity along L3 = 0 are

Au + nAu = 0,
2 2

(3) ^20 + «1^21 + «2^22  =   0,

^20 +  eiAn + £2^22  =   0,

since Lo = <p, Li = ti<p, L2 = e2d> on L3 = 0.

Now when b tends to zero, so do 0, each Lß, Zi, z2, and each DXj<j>,

and hence

DXjLß —* DXjLo —

DXjL¡-+0,

ce i
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2

DXjDXmLß —* 2a,am,

DXjZi —* A loay       on Ro,

-*(Aio+ Au)aj       onRi + Ri,

DXjz2 -* 0,

DXjDXmz2 —> 2A2oa¡am       on R0,

—> 2(A2o + A2i)ajCtm        on Ru

—> 2(A20 + A2i + A22)a¡am        on R2.

Since

/     1 — «i c ei — «2 r €2 r
— =- I    fdx -\-I    fdx -\-I    fdx,
V      Vo Jr0 Vi   JSl v2JRlJ

we find from 1(0) =0 = minimum of 1(b) that

0 g (1 — €i)/(^4ioay, 2^4 20o:yam)

(4) + (ii - e2)f[(Aio + An)ah 2(A20 + ¿2l)ayam]

+ «2/[(-4io + Au)aj, 2(^20 + A2i + A22)ajam].3

This inequality may be regarded as a generalized form of the Weier-

strass condition, in which no partial derivatives of the integrand /

appear. We obtain the ordinary form of the condition by dividing by

(1—ei) and letting ei tend to one. In order to evaluate this limit we

need the derivatives A'n, A2i and A& of An, A2i and yl22 with respect

to «i at «i=l. Let Mß be the cofactor of Sß in the determinant

So    Si    s2

1 «1        «2     •

1 2 21      «i     e2

Then from the equations (3),

^21 = A20Mi/Mo,        A22= A20M2/M0.

Also at «i=l, Mi= —Mo, M2 = 0, and

d    Mi      Mo d    M2      M2

dei   Mo      Mo dei   Mo      Mo

A2i = AwMo/Mo,        A22= A2oM2/M0,        An = A10,

A10+ Au = 0 42o+42i = 0, 420 + 42i + ^22 = 0.

* Here the arguments x, zi, z2, Dz¡ of /, which are all zero, have been omitted.
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In this way we obtain from (4) the inequality

0 ^f(Aioctj, 2A2oocjam)

+ («2 - 1)     2/PlJ-4ioai+ ^fPljm2A2oMoajam/Mo
L    ; j.m

- «2    JlfpijAioctj + £  fPljm2A20(Mo'+ Mî)a,-<xm/Mo

Now at ei=l, (1 —e2)M0' +e2(M¿ +M2) = M0, so this becomes

0 — f(Aioocj, 2^42oa;am) — 23/^.4 io«,- — 11 fp2im2A20ajam
i i,m

or

0   = /(/>!, />2)   -   X) /»Ij/py   -   X Piifnfptjm,
i i.m

where pn = Aioa¡, p2¡m = 2A2oajam, and the arguments of the partial

derivatives of/are those along the minimizing manifold Zi=z2 = 0.

3. The general case. We let n denote the maximum vk, and select

tß satisfying

1 = eo > ei > • ■ • > e„ > e„+i = 0.

With Lo and 0 chosen as in §2, we set

Lß = Lo + (iß — 1)0.

There are now /x + 1 domains Rß defined by (2), and the domain R

which is their union is defined by the inequality O<LO<0. On Rß we

set

x

Zk  =   ¿-I AlceL, ,
1=0

where X is the lesser of ß and vk, Ako is arbitrary, and the remaining

Aka are to be determined as multiples of ^4*0. Outside of R we set

Zfc = 0. The functions zk and their partial derivatives up to order

vk— 1 are obviously continuous along the manifolds Lß = 0 for

j8 = 0, 1, • ■ ■ , ju. To assure the required continuity along the mani-

fold LM+i = 0, it is sufficient to require that the Ak„ satisfy the equa-

tions

yk

2J, Ak*. = 0, p = \, • • • , vk,
»=0
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as may be verified by observing that when £„+1 = 0, L„ = t¿$>, DLo = a,

DL, = DLo + (e,-l)D<p, D2L, = (e,-l)D2<]>, etc. Hence we take

Ak, =» AkoMk./Mko,

where Mk, is the cofactor of s„ in the determinant

So     Si     s2 ■ ■ ■ sv

A =

.>„,.

1 «1      €2 •  ■ • e„t
2           2

1 «1        «2.

1 '*1 «1

When b tends to zero, each zk, with its derivatives up to order v¡, — 1,

tends to zero, and for | i\ =Vk, D'Zk tends to p\$ on Rß, where

n X .X X

(5)     £¡0 = p*! H («*)*£ ^*» = Bk'Jl Ak, = 5t!4to 2~1 Mk,/MM.
;=1 »=0 »=0 <r*-0

As in §2 we may write

I

V

and derive as before the inequality

= 2, —-— I   /<**■
/S-0 ^ 0       J Rf,

(6) 0 g Z (eo - eß+i)f(pß).
0=0

Then we divide (6) by (1 —«i) and let «i tend to unity. In order to

evaluate the result we observe the following relations.

If in the determinant A we put so = si=l, sg = e<, for <r>l, we find

by differentiating the expansion of A on the first row that

(7)
dA       dMk

dti dei

dMk

(T=2

+ E
dei

By first subtracting the second row from the first and then differen-

tiating, we find

(8)
dA

dei
= - Mk

At «i=l, we find

(9) Mki = - MM,       Mkß = 0 for 0 > 1,
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d Mu 1     dMko

â«i Mko Mko    3«i

â Mkß 1     dMkß

dei   Mko       Mko     dei
for ß > 1.

â     i i   Ako    d  r ¿,1
(10) -pkß = Bk--\Mko + 22Mk,\,

dei Mko   ¿>ei L i=2        J

g                         öl" x "1
2~2 (eß - eß+i)-   Mko + X Mk,

(11) ^ d6lL "*        J

d r      4^     i
= — üfio + 2^ e»^*»  ™ ̂ *

dei L ff=2 J

The last equality follows from (7), (8) and (9). So from (6) we have

t S d
0 g f(BkAM) - X) ta - <tf+i) Z)/p*' —- ÍW

0=1 k,i 0€l

= /(sU*o) - E 5U4o/„'(0),

with the help of (10) and (11). Since by (5)

B^VklÍKa^,
y-i

and since we have assumed/(0) =0, the result has the form given in

§1-
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