THE WEIERSTRASS CONDITION FOR MULTIPLE INTEGRAL VARIATIONAL PROBLEMS INVOLVING HIGHER DERIVATIVES¹

LAWRENCE M. GRAVES

1. **Introduction.** We consider the problem of minimizing a multiple integral

$$I = \int_{a} f(x, z, Dz) dx = \int \cdot \cdot \cdot \int f(x, z, Dz) dx_{1} \cdot \cdot \cdot dx_{n},$$

where $x = (x_1, \dots, x_n)$, $z = (z_1, \dots, z_q)$, z is a function of x, and Dz_k denotes the various partial derivatives of z_k with respect to the x_j up to order v_k . When it is necessary to be more explicit, we shall let i denote an n-dimensional vector with nonnegative integer coordinates, and write

$$D^{i} = \prod_{j=1}^{n} D_{x_{j}}^{i_{j}}.$$

We set $|i| = \sum_{i} i_{i}$, and if $|i| = \nu_{k}$, denote $D^{i}z_{k}$ by p_{k}^{i} . These are the derivatives of z_{k} of the highest order that appear.

It is supposed that each z_k and its derivatives up to order $\nu_k - 1$ are continuous on a fixed domain G and take prescribed boundary values on the boundary G^* of G, and that the derivatives of z_k of order ν_k are piecewise continuous. We assume that the integrand f is continuous and has continuous partial derivatives with respect to the arguments p_k^t , for points (x, z, Dz) interior to a domain T. In the Weierstrass &-function, only the arguments p_k^t are varied. Hence we shall define Dz + P by the formula

$$(Dz + P)_k^i = D^i z_k$$
 for $|i| < \nu_k$
= $D^i z_k + P_k^i$ for $|i| = \nu_k$,

and assume for simplicity that the domain T is such that (x, z, Dz + P) is in T whenever (x, z, Dz) is in T. Then we define

$$\mathcal{E}(x, z, Dz, Dz + P) = f(x, z, Dz + P) - f(x, z, Dz) - \sum_{i,k} P_k^i f_{P_k^i}(x, z, Dz),$$

Received by the editors November 23, 1959.

¹ This work was supported by the Office of Ordnance Research under Contract No. DA-11-022-ORD-1833.

where the summation index k runs from 1 to q, and i varies over the set $|i| = \nu_k$.

We shall show that if I is a minimum then

$$\mathcal{E}(x, z, Dz, Dz + P) \geq 0$$

whenever P has the form

$$(1) P_k^i = C_k \prod_{j=1}^n (\alpha_j)^{ij},$$

where C_k and α_i are arbitrary.

We may restrict attention to a point x of G near which all derivatives of z which appear are continuous, and consider only variations ζ of z which vanish outside a neighborhood of x. Then if we put

$$\bar{f}(x,\zeta,D\zeta) = f(x,z+\zeta,Dz+D\zeta) - f(x,z,Dz),$$

$$\bar{I}(\zeta) = \int \bar{f}dx,$$

we see that in (x, ζ) -space, the minimizing manifold is $\zeta = 0$, and $\bar{f}(x, 0, 0) = 0$. By a translation we may also suppose that the point x under consideration is the origin. We replace ζ by z and \bar{f} by f, and understand in the proofs that any argument of f or its partial derivatives which is not written is zero. In §2 we give the proof for the case q = 2, $\nu_1 = 1$, $\nu_2 = 2$, and in §3 treat the general case. The method of proof is an extension of that given by the author for the case when only first derivatives appear.²

2. A special case. We consider here an integrand

$$f(x, z_1, z_2, Dz_1, Dz_2, D^2z_2),$$

where D^2z_2 stands for all the second derivatives $D_{x_j}D_{x_m}z_2$, and no derivatives appear which are of higher order than those indicated. Let

$$L_0 = \sum_{j=1}^n \alpha_j x_j,$$

where for convenience α is chosen as a unit vector, and for a small b>0 and $|x| \leq b$ let

$$\phi = \left[1 + L_0^2 - \left|x\right|^2\right]^{1/2} - \left[1 - b^2\right]^{1/2},$$

where |x| denotes the Euclidean length of the vector x. (Note that

² See Duke Math. J. vol. 5 (1939) pp. 656-660.

|i| was defined differently.) Then ϕ has bounded partial derivatives of all orders, and ϕ and its first partial derivatives approach zero uniformly with b. Let $1 = \epsilon_0 > \epsilon_1 > \epsilon_2 > \epsilon_3 = 0$, and set

$$L_1 = L_0 + (\epsilon_1 - 1)\phi,$$

 $L_2 = L_0 + (\epsilon_2 - 1)\phi,$
 $L_3 = L_0 - \phi.$

Then the loci $L_{\beta}=0$, $(\beta=0, 1, 2, 3)$, bound three adjacent domains R_0 , R_1 , R_2 in x-space, defined by

(2)
$$R_{\beta} = [x \mid L_{\beta+1} < 0 < L_{\beta}].$$

If V = V(b) denotes the volume of $R = R_0 + R_1 + R_2$, then the volume of R_{β} is $V_{\beta} = (\epsilon_{\beta} - \epsilon_{\beta+1}) V$, as is readily verified by considering the special case $\alpha_1 = 1$, $\alpha_j = 0$ for j > 1. Also V tends to zero with b.

The variations of the minimizing manifold z=0 are constructed as follows. Let A_{10} , A_{20} be arbitrary constants, and let A_{11} , A_{21} , A_{22} denote functions of ϵ_1 , ϵ_2 , to be determined. Set

$$z_{1} = A_{10}L_{0} \qquad \text{on } R_{0},$$

$$= A_{10}L_{0} + A_{11}L_{1} \qquad \text{on } R_{1} + R_{2},$$

$$z_{2} = A_{20}L_{0}^{2} \qquad \text{on } R_{0},$$

$$= A_{20}L_{0}^{2} + A_{21}L_{1}^{2} \qquad \text{on } R_{1},$$

$$= A_{20}L_{0}^{2} + A_{21}L_{1}^{2} + A_{22}L_{2}^{2} \qquad \text{on } R_{2},$$

$$z_{1} = z_{2} = 0 \text{ outside } R.$$

Then z_1 is continuous except possibly along $L_3 = 0$, and z_2 and its first partial derivatives are continuous except possibly along $L_3 = 0$. Sufficient conditions for the required continuity along $L_3 = 0$ are

(3)
$$A_{10} + \epsilon_1 A_{11} = 0,$$

$$A_{20} + \epsilon_1^2 A_{21} + \epsilon_2^2 A_{22} = 0,$$

$$A_{20} + \epsilon_1 A_{21} + \epsilon_2 A_{22} = 0,$$

since $L_0 = \phi$, $L_1 = \epsilon_1 \phi$, $L_2 = \epsilon_2 \phi$ on $L_3 = 0$.

Now when b tends to zero, so do ϕ , each L_{β} , z_1 , z_2 , and each $D_{x_j}\phi$, and hence

$$D_{x_j}L_{eta} o D_{x_j}L_0 = \alpha_j,$$
 $D_{x_i}L_{eta}^2 o 0,$

$$egin{aligned} D_{x_j}D_{x_m}L_{eta}^2 &
ightarrow 2lpha_jlpha_m, \ D_{x_j}z_1 &
ightarrow A_{10}lpha_j & ext{on } R_0, \ &
ightarrow (A_{10}+A_{11})lpha_j & ext{on } R_1+R_2, \ D_{x_j}z_2 &
ightarrow 0, \ D_{x_j}D_{x_m}z_2 &
ightarrow 2A_{20}lpha_jlpha_m & ext{on } R_0, \ &
ightarrow 2(A_{20}+A_{21})lpha_jlpha_m & ext{on } R_1, \ &
ightarrow 2(A_{20}+A_{21}+A_{22})lpha_jlpha_m & ext{on } R_2, \end{aligned}$$

Since

$$\frac{I}{V} = \frac{1-\epsilon_1}{V_0} \int_{R_0} f dx + \frac{\epsilon_1-\epsilon_2}{V_1} \int_{R_1} f dx + \frac{\epsilon_2}{V_2} \int_{R_2} f dx,$$

we find from $I(0) = 0 = \min \text{minimum of } I(b) \text{ that}$

$$0 \leq (1 - \epsilon_{1}) f(A_{10}\alpha_{j}, 2A_{20}\alpha_{j}\alpha_{m})$$

$$+ (\epsilon_{1} - \epsilon_{2}) f[(A_{10} + A_{11})\alpha_{j}, 2(A_{20} + A_{21})\alpha_{j}\alpha_{m}]$$

$$+ \epsilon_{2} f[(A_{10} + A_{11})\alpha_{j}, 2(A_{20} + A_{21} + A_{22})\alpha_{j}\alpha_{m}].^{3}$$

This inequality may be regarded as a generalized form of the Weierstrass condition, in which no partial derivatives of the integrand f appear. We obtain the ordinary form of the condition by dividing by $(1-\epsilon_1)$ and letting ϵ_1 tend to one. In order to evaluate this limit we need the derivatives A'_{11} , A'_{21} and A'_{22} of A_{11} , A_{21} and A_{22} with respect to ϵ_1 at $\epsilon_1=1$. Let M_{β} be the cofactor of s_{β} in the determinant

$$\begin{vmatrix} s_0 & s_1 & s_2 \\ 1 & \epsilon_1 & \epsilon_2 \\ 1 & \epsilon_1^2 & \epsilon_2^2 \end{vmatrix}.$$

Then from the equations (3),

$$A_{21} = A_{20}M_1/M_0, \qquad A_{22} = A_{20}M_2/M_0.$$

Also at $\epsilon_1 = 1$, $M_1 = -M_0$, $M_2 = 0$, and

$$\frac{\partial}{\partial \epsilon_1} \frac{M_1}{M_0} = \frac{M'_0}{M_0}, \quad \frac{\partial}{\partial \epsilon_1} \frac{M_2}{M_0} = \frac{M'_2}{M_0},$$

$$A'_{21} = A_{20}M'_0/M_0, \quad A'_{22} = A_{20}M'_2/M_0, \quad A'_{11} = A_{10},$$

$$A_{10} + A_{11} = 0 \quad A_{20} + A_{21} = 0, \quad A_{20} + A_{21} + A_{22} = 0.$$

³ Here the arguments x, z_1 , z_2 , Dz_2 of f, which are all zero, have been omitted.

In this way we obtain from (4) the inequality

$$0 \leq f(A_{10}\alpha_{j}, 2A_{20}\alpha_{j}\alpha_{m})$$

$$+ (\epsilon_{2} - 1) \left[\sum_{j} f_{p_{1j}} A_{10}\alpha_{j} + \sum_{j,m} f_{p_{2jm}} 2A_{20} M'_{0}\alpha_{j}\alpha_{m} / M_{0} \right]$$

$$- \epsilon_{2} \left[\sum_{j} f_{p_{1j}} A_{10}\alpha_{j} + \sum_{j,m} f_{p_{2jm}} 2A_{20} (M'_{0} + M'_{2}) \alpha_{j}\alpha_{m} / M_{0} \right].$$

Now at $\epsilon_1 = 1$, $(1 - \epsilon_2)M_0' + \epsilon_2(M_0' + M_2') = M_0$, so this becomes

$$0 \le f(A_{10}\alpha_j, 2A_{20}\alpha_j\alpha_m) - \sum_j f_{p_{1j}} A_{10}\alpha_j - \sum_{j,m} f_{p_{2jm}} 2A_{20}\alpha_j\alpha_m$$

or

$$0 \leq f(p_1, p_2) - \sum_{i} p_{1i} f_{p_{1i}} - \sum_{i,m} p_{2im} f_{p_{2im}},$$

where $p_{1j} = A_{10}\alpha_j$, $p_{2jm} = 2A_{20}\alpha_j\alpha_m$, and the arguments of the partial derivatives of f are those along the minimizing manifold $z_1 = z_2 = 0$.

3. The general case. We let μ denote the maximum ν_k , and select ϵ_{θ} satisfying

$$1 = \epsilon_0 > \epsilon_1 > \cdots > \epsilon_u > \epsilon_{u+1} = 0.$$

With L_0 and ϕ chosen as in §2, we set

$$L_{\beta} = L_0 + (\epsilon_{\beta} - 1)\phi.$$

There are now $\mu+1$ domains R_{β} defined by (2), and the domain R which is their union is defined by the inequality $0 < L_0 < \phi$. On R_{β} we set

$$z_k = \sum_{\sigma=0}^{\lambda} A_{k\sigma} L_{\sigma}^{\nu_k},$$

where λ is the lesser of β and ν_k , A_{k0} is arbitrary, and the remaining $A_{k\sigma}$ are to be determined as multiples of A_{k0} . Outside of R we set $z_k = 0$. The functions z_k and their partial derivatives up to order $\nu_k - 1$ are obviously continuous along the manifolds $L_{\beta} = 0$ for $\beta = 0$, $1, \dots, \mu$. To assure the required continuity along the manifold $L_{\mu+1} = 0$, it is sufficient to require that the $A_{k\sigma}$ satisfy the equations

$$\sum_{n=0}^{\nu_k} A_{k\sigma} \epsilon_{\sigma}^{\rho} = 0, \qquad \rho = 1, \cdots, \nu_k,$$

1960]

as may be verified by observing that when $L_{\mu+1}=0$, $L_{\sigma}=\epsilon_{\sigma}\phi$, $DL_{0}=\alpha$, $DL_{\sigma}=DL_{0}+(\epsilon_{\sigma}-1)D\phi$, $D^{2}L_{\sigma}=(\epsilon_{\sigma}-1)D^{2}\phi$, etc. Hence we take

$$A_{k\sigma} = A_{k0} M_{k\sigma} / M_{k0},$$

where $M_{k\sigma}$ is the cofactor of s_{σ} in the determinant

$$\Delta = \begin{vmatrix} s_0 & s_1 & s_2 & \cdots & s_{r_k} \\ 1 & \epsilon_1 & \epsilon_2 & \cdots & \epsilon_{r_k} \\ 1 & \epsilon_1 & \epsilon_2 & \cdots & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \epsilon_1 & \epsilon_1 & \cdots & \epsilon_n \end{vmatrix}.$$

When b tends to zero, each z_k , with its derivatives up to order $\nu_k - 1$, tends to zero, and for $|i| = \nu_k$, $D^i z_k$ tends to $p_k^i \rho$ on R_{ρ} , where

(5)
$$p_{k\beta}^{i} = \nu_{k}! \prod_{j=1}^{n} (\alpha_{j})^{i_{j}} \sum_{\sigma=0}^{\lambda} A_{k\sigma} = B_{k}^{i} \sum_{\sigma=0}^{\lambda} A_{k\sigma} = B_{k}^{i} A_{k0} \sum_{\sigma=0}^{\lambda} M_{k\sigma} / M_{k0}.$$

As in §2 we may write

$$\frac{I}{V} = \sum_{\beta=0}^{\mu} \frac{\epsilon_{\beta} - \epsilon_{\beta+1}}{V_{\beta}} \int_{R_{\alpha}} f dx,$$

and derive as before the inequality

(6)
$$0 \leq \sum_{\beta=0}^{\mu} (\epsilon_{\beta} - \epsilon_{\beta+1}) f(p_{\beta}).$$

Then we divide (6) by $(1-\epsilon_1)$ and let ϵ_1 tend to unity. In order to evaluate the result we observe the following relations.

If in the determinant Δ we put $s_0 = s_1 = 1$, $s_{\sigma} = \epsilon_{\sigma}$ for $\sigma > 1$, we find by differentiating the expansion of Δ on the first row that

(7)
$$\frac{\partial \Delta}{\partial \epsilon_1} = \frac{\partial M_{k0}}{\partial \epsilon_1} + \sum_{\sigma=2}^{r_k} \epsilon_{\sigma} \frac{\partial M_{k\sigma}}{\partial \epsilon_1} .$$

By first subtracting the second row from the first and then differentiating, we find

$$\frac{\partial \Delta}{\partial \epsilon_1} = -M_{k1}.$$

At $\epsilon_1 = 1$, we find

(9)
$$M_{k1} = -M_{k0}, M_{k\beta} = 0 \text{ for } \beta > 1,$$

$$\frac{\partial}{\partial \epsilon_{1}} \frac{M_{k1}}{M_{k0}} = \frac{1}{M_{k0}} \frac{\partial M_{k0}}{\partial \epsilon_{1}},$$

$$\frac{\partial}{\partial \epsilon_{1}} \frac{M_{k\beta}}{M_{k0}} = \frac{1}{M_{k0}} \frac{\partial M_{k\beta}}{\partial \epsilon_{1}} \quad \text{for } \beta > 1.$$

$$\frac{\partial}{\partial \epsilon_{1}} p_{k\beta}^{i} = B_{k}^{i} \frac{A_{k0}}{M_{k0}} \frac{\partial}{\partial \epsilon_{1}} \left[M_{k0} + \sum_{\sigma=2}^{\lambda} M_{k\sigma} \right],$$

$$\sum_{\beta=1}^{\mu} (\epsilon_{\beta} - \epsilon_{\beta+1}) \frac{\partial}{\partial \epsilon_{1}} \left[M_{k0} + \sum_{\sigma=2}^{\lambda} M_{k\sigma} \right]$$

$$= \frac{\partial}{\partial \epsilon_{1}} \left[M_{k0} + \sum_{\sigma=2}^{r_{k}} \epsilon_{\sigma} M_{k\sigma} \right] = M_{k0}.$$

The last equality follows from (7), (8) and (9). So from (6) we have

$$0 \leq f(B_k^i A_{k0}) - \sum_{\beta=1}^{\mu} (\epsilon_{\beta} - \epsilon_{\beta+1}) \sum_{k,i} f_{pk}^i \frac{\partial}{\partial \epsilon_1} p_{k\beta}^i$$
$$= f(B_k^i A_{k0}) - \sum_{k,i} B_k^i A_{k0} f_{pk}^i(0),$$

with the help of (10) and (11). Since by (5)

$$B_k^i = \nu_k! \prod_{j=1}^n (\alpha_j)^{ij},$$

and since we have assumed f(0) = 0, the result has the form given in §1.

THE UNIVERSITY OF CHICAGO