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1. This note deals with some theorems similar to the following

theorem announced by R. Remmert [4j.

Theorem. Let X be a holomorphically separable, connected (normal)

complex space of dimension n. Then, there exists a one-one, holomorphic

map of X in C2n+1.

We use throughout the terminology of [2] and [4].

In §2, we give a simple proof of the following slightly stronger ver-

sion of this theorem.

Theorem 1. Let X be a connected holomorphically separable complex

space of dimension n, (not necessarily normal). Let e>0, K a compact

set in X and let <p\, ■ ■ ■ , <j>2n+i be arbitrary holomorphic functions on X.

Then, there is a one-one holomorphic map f— (/1( • • • , /2»+i) of X in

C2n+1 such that

| fi(x) - <bi(x) |   < e       îorxGK.

In §3, we consider the existence of holomorphic maps with a given

rank on complex spaces countable at infinity. We use the method

given here to make a remark on an imbedding theorem for holo-

morphically complete spaces due to R. Remmert [4].

The author is indebted to Professor H. Cartan for his suggestions

and for pointing out that the space of holomorphic functions is com-

plete even for non-normal spaces. The author's thanks are due also

to Professor K. Chandrasekharan for his encouragement prior to and

during the preparation of this note.

2. We shall denote, throughout this note, the space of holo-

morphic functions on a complex space X, with the compact con-

vergence topology, by R(X) =R.

If X is holomorphically separable, it can be shown that X is in-

complete (in the sense of [l]; we note that it is enough to have, for

any x0G-X\ a holomorphic map /: X—>C* such that x0 is an isolated

point of/_1/(xo)), so that, by [l, Satz 8], X is countable at infinity.

Hence R(X) is metrisable, and by [2, Satz 28], it is complete.

We prove first

Theorem 2. If X is a connected, holomorphically separable complex

space and {xm} a sequence of distinct points of X, then there is a holo-
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morphic function f on X such that if m^m', then fix n) ^/(ï„-). / may

be required to approximate an arbitrarily given <pCRiX) on a given

compact set.

Proof. Let x, y EX, x^y. The set C(x, y) oifCR with/(x) =/(y)
is clearly closed in R. Also U = R—Cix, y) is dense in R; for let gER.

If «(*) *giy), then gG U. If g(x) =giy) and if/Gi?,/(x) ^/(y), and if
X^O then g+\fCU so that gCU; hence Z7 = i?. Thus C(x, y) is
nowhere dense in R.

Let C = Um?im' C(xm, xm'). C is a set of the first category. By Baire's

theorem, R—C is dense in R. Theorem 2 follows.

We proceed to the proof of Theorem 1. Let Y=XXX— A (A being

the diagonal of XXX). Since X is countable at infinity, so is Y.

Hence any analytic set in Y has at most countably many irreducible

components. Let/iGi? satisfy |/i(x) — #i(x)| <e, xEK, and be non-

constant on any irreducible component of Y (which exists, by Theo-

rem 2). Let Ax be the analytic set of points (x, y) G Y with/i(x) —fxiy)

= 0. Then, clearly, dirndl,g2»-l. If Af>, p = i, 2, ■ ■ ■ are its

irreducible components, choose (x?, yï)G-4Î°). By Theorem 2, there

is an f2CR, |/2(x)-02(x)| <€ on K, /2(xf)^/2(y?). The set Ai of

(x, y)CY with /i(x) =/i(y), /2(x) =/2(y) has dim ,42g2w-2, for if B

is an irreducible component of .42 and BCAx\ then (xf, y^G^i0,

G-B so that dim 2?<dim ^4^'^2w —1. Theorem 1 follows on repeat-

ing this process.

3. Let/ be a holomorphic map of the purely «-dimensional com-

plex space X, f: X-+Ck. The rank r(J, x0) of / at x0EX is by defini-

tion, the codimension at Xo of the analytic set/_1/(x0) (see Remmert

[5]).

Theorem 3. Let X be a purely m-dimensional complex space counta-

ble at infinity. Suppose that for each xCX there is a map X—>Ck of

rank ^p at x (fe = ¿(x), p a fixed integer >0). Then there is an integer

N = Nin) and a holomorphic map X—>CN of rank ^p at any point of X.

Lemma 1. Let /= (/i, • • ■,/*): X-*Ch have rank p at xo and U be

a neighbourhood of xo. Then, there is an e>0 such that if <px, • ■ ■ , 0t

CRiX) and \<pi—fi\ <e on U, then i<pu • • • , <£*) has rank ^p at x0.

Proof. We may suppose that X is a purely «-dimensional analytic

set in an open set GCCn+m. Now, dim(xo, /_1/(xo)) =n—p. Hence

there is an m-\-p dimensional analytic plane Z in G through xo such

that xo is an isolated point of ZP\/_1/(xo). Let X' =XC\Z and /' be

the restriction of/ to X'. Then x0 is an isolated point of /'_1/'(x0)
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and so /' gives a nowhere degenerate map of a neighbourhood of x0 in

X' by [5, Satz 15]. Hence, by [l, Hilfssatz 3], if <f>i<ER(X), \<pi-fi\
<e and if t is small enough, the restriction of <p to X is nowhere degen-

erate in a neighbourhood of xo so that xo is an isolated point of

Zr\4>~l<p(xo). Since dim Z = m+p, dim(x0, <p~l<p(xo)) ̂¡n — p and

Lemma 1 is proved.

Lemma 2. Let <£ = (</>i, • • • , <pk):X-^>Ck have rank p at xo and let

fÇzR(X). Then, for all constants X, excepting finitely many, the map

(/+X$i, <f>2, ■ ■ ■ , 4>k) has rank ^p at xo-

Proof. We may suppose that/(x0) =0¿(xo) =0. Let A be the ana-

lytic set of x where <p2(x) = • • • = <pk(x) =0. Let Ai, ■ ■ ■ , Am be the

irreducible components of A containing Xo and having dimension

>n — p. The points of ^4y where <p\(x) =0 has dimension ^n — p at x0.

Since the set of zeros of a nonconstant holomorphic function on an

irreducible complex space of dimension / is purely t — 1 dimensional,

dim Aj = n — £ + 1. Clearly 4>\^Q on any A¡. If f/4>\ is nonconstant

on some ^4y then/+X0i^O on A¿ for any X. If Ai, ■ ■ ■ , At are those

A's on which f/<pi is constant and//<£i = Xy on A¡ (j= 1, • • • , t), then

/-fX^i^O on A, 0' = 1, • • • , m) if \¿¿ — Xi, • ■ • , —A«. Then, the
set of points where/+X01 = </)2= • ■ • =<j>k = 0 has dimension ^n—p

at Xo and Lemma 2 follows.

Lemma 3. ///or some x0(E.X there is a map f: X—>Ck of rank ^p at

Xo, then there is a map 4>: X—>CP of rank =p at xo (and the components

of 4> may be chosen as linear combinations of those of f).

This is proved similarly to Lemma 2.

Proof of Theorem 3. Let RP(X) be the space of ¿»-tuples of

holomorphic functions on X. If, for ï£X, C(x) is the set oif<G.Rp(X)

having rank <p at x, then, by Lemma 1, C(x) is closed. By Lemmas

2, 3, RP(X) - C(x) is dense in RP(X) for lif<=Rp(X) and (</>,, ■ • •, <f>p)
GRp(X)-C(x),\^0 then, there are m, Oá/i.-ál, i= 1, • • ■ ,/> such

that (/i+X;iii</>i, • • • , fp-\-\pP<i>p) has rank ^£ at x, by Lemma 2.

It follows as in Theorem 2 that given a countable set {xm} on X,

there is an f(E.Rp(X) of rank ^p at xm for each w. Since, for any

holomorphic map </>: X—>C*, the set of xG-X" with r(q>, x) <p is ana-

lytic in X by [5, Satz 17], Theorem 3 follows if we apply downward

induction on the dimension of analytic sets similar to the proof of

Theorem 1.

It is clear, moreover, that we could require the mapping functions

to approximate to arbitrarily given functions on a given compact set.
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Theorem 4. Let X be a normal, connected complex space. Suppose

that there exists a mapf= (/i, •••,/*): X—>Ck of constant rank p on X.

Then, to every e>0 and complex numbers aß„ß—l, ■ ■ • ,p,v—\, • ■ ■ ,k,

there exists a matrix (¿^0 with ¡b^ — a^yl <e such that the functions

^l-xbßyfy, n=l, • • • , p have rank p at every point of X. In par-

ticular, there is a map X—*CV of rank p at all points of X.

Proof. Let (X*,f*) be a complex base of (A7",/) (see Stein [ó]) and

let / = $o/*, # = ($i, • • ■ , $k):X*^>Ck. As in Lemma 3, to any

XoCX, there is a map (</>i, • • • , <pp): X—>CP such that each <pi is a

linear combination of the/y, such that <px, ■ ■ ■ , <i>P have rank ^p at

Xo and so in a neighbourhood of Xo; since clearly (pi "depend on /" (in

the sense of Stein), the <pt have constant rank p in an open neighbour-

hood U of xo and so give an open map of U onto an open set

VZ~)i4>xixo), ■ • • , <Ap(xo))GCp. Clearly <pi=\pi o/* where \pi is a linear

combination of 4>i, • • • , «Ê*. Clearly (i^i, • • • , \pp) give an open

map of/*([/) onto V and so they are nowhere degenerate in/*(£/)

of rank p = dim X*. Consequently, (<3?i, • • • , $*) is nowhere degen-

erate in/*(£/). The result follows at once from [l, Satz 8 and Satz

H].

Theorem 4 is true even for arbitrary (non-normal) complex spaces

X, if we suppose X to be countable at infinity (or that X has count-

ably many irreducible components).

The conditions of Theorem 4 are satisfied if the following condi-

tions are satisfied:

(a) X is countable at infinity;

(b) for any XoCX, there is a map/: X—>CP with ?•(/, x0) ^p;

(c) for any XoGAT and any map <p: X—yCp+1, we have r(</>, x0) ^p.

In this case, it is easily deduced from Theorems 3 and 4 that there

is a map of X in C" of rank p on all X which approximates to an arbi-

trarily given map of X in Cp on a given compact set.

Let now X be a complex manifold and /: X—>Ck a holomorphic

map. We shall denote by p(/, x0), where xoGA", the rank at x0 of the

Jacobian matrix of / with respect to any local coordinate system at

xo. Then we have

Theorem 5. Let X be countable at infinity and suppose that to any

XoCX there is a holomorphic mapf: X—*Ck with p(/, x0) ̂ p. Then there

is an integer N=Nin) and a holomorphic map <p: X—>CN with p(<£, x)

^p for any xCX.

Finally, we remark that the method used above can be used to

prove
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Theorem 6. Let X be a complex space and suppose that there is an

integer N>0 such that every xoG-X" has a neighbourhood U and a map

f: X—*CN which imbeds U isomorphically onto an analytic set A in an

open set in CN (i.e. f induces an isomorphism between the holomorphic

functions on open sets in U and functions on open sets of A which are

locally restrictions of holomorphic functions in open sets in CN). Then

there is a map f: X—=>CM with this property at all points of X.

We construct a map 0: X—>C2n+1 which is one-one in a neighbour-

hood of any point of X. (This follows similarly to Theorem 1). Then

<p gives a one-one proper map of a neighbourhood U of any point of X

into a sphere H in C2n+1. The set of points where <f> fails to have the

property of Theorem 6 can then be shown to be an analytic set as

follows. If X is normal, this follows at once from the theorem of

K. Oka that the set of non-normal points of an analytic set is itself

analytic [3]. In the general case <p(U) is analytic in H. If £5 is the

structure sheaf of U and g that of <p(U), then </>o(d) the 0th image of

O (see [2]) is a coherent sheaf on H containing g (see [2, Satz 27]).

Hence </>o(£>)/r5 is a coherent sheaf, and the set of exceptional points

in U is the inverse image of the set of points a where (4>o(0)/%)ay£0,

which is analytic. We can prove, analogously to the proof of Theorem

3, that the set oifG.RN(X) such that (<£,/) fails to imbed any neigh-

bourhood of a given point xo(E.X isomorphically is nowhere dense in

RN(X) (see proof of [l, Satz 3]). Theorem 6 follows as before.

Remmert [4] has proved that any holomorphically complete nor-

mal space has a one-one proper imbedding in some CN. It follows

from Theorem 6, that if in addition, we suppose that any point of X

has a neighbourhood which has a normal imbedding in an open set of

C* where k is bounded on X, then X is isomorphic to a normal analytic

set in some CM.
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