
ON THE HAHN-MAZURKIEWICZ THEOREM IN
NONMETRIC SPACES

SIBE MARDESIC

About 1914 H. Hahn [2] and S. Mazurkiewicz [4]1 topologically

characterized continuous images of the real line segment as metric

compact connected and locally connected spaces. This included the

result that, for locally connected metric compacta, connectedness

and pathwise connectedness coincide.2 These theorems were never

extended to nonmetric spaces, although there existed a conjecture

seemingly known to many topologists.3 The real line segment is re-

placed by ordered continua, while the pathwise connectedness is

replaced by connectedness by ordered continua (for definitions see

§1). The conjecture can be stated as follows:

For Hausdorff compact and locally connected spaces, connectedness

and connectedness by ordered continua coincide. The class of Hausdorff

spaces, which are continuous images of ordered continua, and the class of

Hausdorff compact connected and locally connected spaces coincide.

This paper refutes both parts of the conjecture by producing a

counter-example, which is effectively constructed.

1. Statement of results. An ordered space is a topological space

provided with a total ordering < such that the topology of the space

is the order topology4 induced by <. An ordered continuum C is an

ordered space which is compact and connected. Each closed subset

C'CC has a maximal and a minimal element, which are denoted by

max C and min C respectively. In particular, we have the two end-

points Co = min C and Ci = max C; co<Ci unless C is degenerate. The

set {t\tCC, íoá<á<i) will be denoted by [t0, h]c.

Definition. A space X is said to be connected by ordered con-

tinua provided, for each pair of points x0CX, XiCX, there is an

ordered continuum C and a map x: C-^X, mapping the end-points

of C into Xo and *i respectively.

Presented to the Society, January 29, 1960; received by the editors October 19,

1959.
1 On p. 166 of [4] references are given to three earlier Polish notes by S. Mazur-

kiewicz on the same subject.

2 For an exposition see e.g. [5, Chapter III].

3 The author is indebted to Professor R. D. Anderson for bringing the conjecture

to author's attention. The conjecture seems to be nowhere in print. As a very natural

question it has occurred independently at least to E. Dyer, A. J. Ward and R. F.

Williams.

« See e.g. [3, p. 57].
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Theorem 1. There exists a Hausdorff compact and locally connected

space S, which is connected but is not connected by ordered continua.

Theorem 2. There exists a Hausdorff compact connected and locally

connected space S, which is not obtainable as the image of a mapping

X'- C—>S, C being an ordered continuum.6

A space X, which admits a mapping x of an ordered continuum

C onto X, clearly, is connected by ordered continua. Therefore, a

space S which verifies Theorem 1, verifies at the same time Theorem

2, too. The rest of the paper is devoted to constructing a space S

that verifies Theorem 1.

2. Scheme for the construction of 5. 1. Let {Sr], rCR, be a col-

lection of topological spaces and let for each r££ be given a map

p,: Sr—>7 onto the real line segment 7= {w | 0 ;£ « = 1} • With each such

family \Sr, pr), rCR, we associate a space S = 5(5r, pr), defined as

the subset of the Cartesian product JJr Sr, rCR, consisting precisely

of those points s = {sr} C JJr Sr, for which

(1) Pr(Sr)   =  Pr'(v),

for all r, r'CR- In other words, if wr: (JJ, Sr)—>ST denotes the projec-

tion onto Sr, then SiSr, pr) is the maximal subset of IJr Sr for which

PrflV (Ilr «Sv)—»7 is independent of rCR- Henceforth we denote

pr;rr] S by f. 5 is, clearly, a closed subset of IJr Sr; hence, if all Sr are

Hausdorff compact spaces, then so is 5.

2. In the sequel we shall define a certain family \Sr, pr\, rCR,

with the following property:

Property (i). Given any ordered continuum C and a map <b: C—>I,

carrying the two end-points of C into 0 and 1 respectively, then one

can find an r'CR (depending on <j>) such that there is no continuous

map \¡/T'- C-^5,' with pT$r> =</>.

Lemma 1. The space S = SiSr, pr) associated with a family {Sr, pr},

rCR, which possesses Property (i) cannot be connected by ordered con-

tinua.

Proof, f : S—*I being a mapping onto, there exist points 50Gf-1(0)

CS and siCÇ~x(l)CS. Suppose that C is an ordered continuum and

X: C-+S a map with x(co) = So, x(*0 =Ji- Then Çx- C—*I is a map with

5 Added in proof: Since the submitting of this paper very simple examples estab-

lishing Theorem 2 have been given in the author's paper, Mapping ordered continua

onto product spaces, to appear in Glasnik Mat.-Fiz. Astr. Druätvo Mat. Fiz. Hrvatske.

Ser. II. vol. 15 (1960). Thus it appears that the hard question is the one settled by

Theorem 1.
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fx(co)=0, fx(ci) = L By Property (i), there is an r'CR such that

there is no continuous mapping i/v: C^>Sr> with pr^T' = fx- However,

this relation is verified by \}/r> =irr'X because f = pr'irr'. This contradic-

tion proves the assertion.

In order to obtain Theorem 1 we have to impose further conditions

on {Sr, Pr}, rCR, which shall insure compactness, connectedness and

local connectedness of S.

3. First, assume that all Sr are Hausdorff compact spaces, while

£ is infinite. Observe that lJ_r Sr, rCR, is the inverse limit of all the

finite Cartesian products Sr(i)X • • ■ XSr(n), {KI), " • • » rin)} CR,

the bonding maps of the inverse system being the obvious projections

induced by inclusions {r(l), " • • i K»)} C {r'il), • • • , r'in')},

1^«<«'; these maps will be denoted by 7rr(i)...r(»),r'(i)...r'(n')- It is

readily seen that this inverse system presentation for JJr Sr, rCR,

induces a presentation for SC Ilr ST, where the spaces ST(i) X • • •

XSr(n) have to be replaced by the subsets Srm...Tin)=SiSrti-¡, Prc¿))> *

= 1, • • • , «, of 5r(i) X • • • X5,(„) ; the bonding maps are restrictions

OÍ irr(l)...r(n),r'(l).-.r'(n').

Lemma 2. If the maps pr: Sr—>7, rCR, are monotone, then the maps

Tr(i)-..r(n),r'(i)..-r'(n'): ■S'r'O)• • •r'(n')—*&(«...r(») are monotone too.

Proof. Let {r(l), ■ • • ,r(n)}c{r'(l), • • • , r'(«')}, 1 ̂ «<«'; one

can assume that r'(¿) =r(7), for t = l, • • • ,«<«'. If sr(i) X • • • XsrM

CSr(.i).-.r(n), then clearly

(irr(i).. •r(ii),r'(l)---r'(7i'))_1('yr(l)  X   •   ■   '  X Sr(„))

(2)
= Sr(l)   X   •   •   •   X  ir(n)   X   (pr'(»+l))    K«)   X   •   •   ■   X   (pr'(n'))_1(«) >

where «=Pr(i)(ir«)), i=l, ■ • ■ , n. Since all pr- are monotone maps

(by assumption), it follows that the set (2) is connected as required.

Now, we state the second property required for \ST, pr], rCR:

Property (ii). All the maps pr, rCR, are monotone and all the

spaces Sr(i)...r(n), 1 =«> are Hausdorff compact connected and locally

connected.

In view of the preceding inverse system presentation for S and

Lemma 2, we see that whenever {SV, pr}, rCR, has Property (ii),

then S = SiSr, pr) is the inverse limit of an inverse system of connected

and locally connected Hausdorff compact spaces with bonding maps

all of which are monotone mappings onto. A known theorem asserts

that under these conditions the limit space is itself Hausdorff com-

pact connected and locally connected (see [l, Theorem 4.3, p. 241 ]).

We summarize the results of this section in
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Lemma 3. Let \Sr, pr], rCR, be an infinite family of spaces Sr and

maps pr: 5V—>7 onto I, which possesses Properties (i) and (ii). Then

the associated space S = SiSr, pT) has all the properties required in Theo-

rem 1.

It remains to show the existence of families {Sr, pr), rCR, having

Properties (i) and (ii).

3. The family {Sr, pr], rCR- 1. The sets Kq and Mq. Consider

the coordinate 3-space with points (w, v, w) and denote by pu, pv and

pw the projections on the u, v and w axes respectively. With each real

number q, Q<2q<l, we associate the broken line Kq, which consists

of three straight line segments joining subsequently the points

a=(0, 0, 0), b = il-q, 0, 0), c=iq, 1, 0),d=(l, 1, 0). We denote the
corresponding segments by ab, be and cd. Kq belongs to the unit

square 72X0= {(«, v, 0)|0g«, v^l}.

Let a', V, c', d' denote the points aXl, bXl etc. ipuia>') = puia),

pvia')=pvia) and £„(a') = l). Consider the segments ab, b'c', be and

c'd'. Given auC[q, 1 — q]i, each of these four segments contains pre-

cisely one point, whose first coordinate equals u; denote these four

points by au, ßu, yu and bu respectively. Finally, consider the straight

line segments außu and yuSu joining au with ßu and yu with du respec-

tively. Now, define a subset Mq of the unit cube 73 by setting

(3) Mq = (£a X 7) U (U,(«A W 7.«-)),     « G [?, 1 - q]i-

It is readily seen that Mq is a connected compact (curvilinear)

polyhedron, hence, a continuous curve. Furthermore, pu restricted

to Mq is a monotone mapping onto 7(J\1(w) is a broken line consist-

ing of 1, 3 or 5 edges).

2. The set N^n)). Consider again the unit square 72X0 and the

sequence of points a„ = (1 —1/2", 1 —1/2", 0), n = 0, 1, • • ■ , converg-

ing towards a00 = (l, 1, 0). Let Ç„C72X0 be the square with sides

parallel to those of 72X0 and having the points a„, an+i for a pair of

opposite vertices. Let \n: I3—>QnXl be the linear mapping carrying

the points (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1) into an,

ipuia„+i), pvio-n), 0), ipuidn), pvian+i), 0) and a„Xl respectively.

Given any sequence (?(«)), « = 0, 1, • • ■ , of reals 0<2g(«) <1, we

consider the sets ~KniMq(n))CQnXl and put

00

(4) A(S(B)) = A5(0)...5(n) ... = U \niMqM) U (a„ X 7).

It is readily seen that N(q(n)) is a continuous curve and that pu\ N(qM)

is monotone (recall that p„\ Mq is monotone).
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3. Definition of the family {Sr, pr}, rCR- Now,we define a fam-

ily {Sr, pr}, rCR, which, we claim, possesses both Properties (i) and

(ii). £ is the set of all sequences (?(«)), « = 0,1, • • -, of reals, 0<2g(«)

<1. If r = iqin))CR, then Sr = N(qW) and pr = £„| A7^»».

Lemma 4. The family {Sr, pr}, rCR, defined above possesses Prop-

erty (i).

The proof will be carried through in several steps.

Lemma 5. Let C be an ordered continuum with end-points co<Ci and

letcp: C-*I=* {m|0^m^1} be a map with <p-1(0) = {c0}, <p-1(l) = {ci}.

Then there exists a real number ??(</>), O^riicb) <1, such that h, kCC,

k^h, implies <pih) —<f>it2) ^r\(</>).

Proof. Consider the set A= {(ii, t2)\ti, t2CC, íi^í2J; as a closed

subset of CXC, A is compact. Therefore, the mapping $>: A—»7, de-

fined by

(5) *(/i, h) = <t>ih) - <t>ih),

has a maximum. Let

(6) r¡i4>) = max *(*j, t2) = *(t{ , U)

for some (//, U)CA. Clearly, Oá*($)ál. However, r¡i<p)=<pití)

-<PÍH) = 1 would imply <b(ti) = l, <p(<2') =0, t{ ^t2 , contradicting the

assumptions <p-1(0) = {c0}, 0-1(i) = {Ci} •

Lemma 6. Let <p: C^>I be as in Lemma 5 and let 0<2q<l—r]i<p).

Then there is no continuous map \p: C-^Kq with puip = <p-

Proof. Assume that \p is such a map. Then púdica) =<p(c0) =0 and

thus ^(c0) =a'< similarly, ^(¿l) =d. Since C is connected and Kq is an

arc with end-points a and d, y¡/ is a map onto Kq and thus $~lib) is

not empty. Let // =maxT'~1(4). Then, clearly, ^ maps [tí, Ci]c into

bc\JcdCKq, which implies the existence of t2 ^t{ with ypit2)=c. In

other words, we have Hi, t2)CA and *(ii, t2)=pu\piti)-p^it2)

= Puib)—puic) = l—2q>r¡i4>). This contradicts Lemma 5.

Lemma 7. £e/ 0 : C—»7 í»e as îm Lemma 5, /e/ 0 < 2g < 1 — r¡i<p) and let

4>: C^>Mq be a mapping with pu\}/ = <b. Then there exist two points

h, t2CC such that pw\piti) =0, pw^it2) = 1.

Proof. Assume that pw\pit)5¿0, for all tCC. Define a mapping

6: (M4-£,)->£, XI as follows. For («, v, w)G£sX(0. l]j, let

0(w, », w) = (w, v, 1); for (w, i>, w)Cavßu, let 0(«, z/, w)—ßu and for

(w, », w) CyuQu, let 0(w, v, w) = 5«. 0 is obviously continuous on Mq — Kq.



934 SIBE MARDEálC [December

Furthermore, denote by puv the projection sending (w, v, w) into

(w, v, 0) and observe that pu = pupuS on Mq — Kq. Therefore, <p = pjp

= puipuvS\p) on C. Since puJ9^/: C—>£„ is continuous, we have arrived

at a contradiction with Lemma 6. In a similar fashion we prove that

pwiiit)^!, for all tCC, is not possible.

4. Proof of Lemma 4. Let C be an ordered continuum and let

<j>: C^>I be a map with <p(c0) =0, <f>ici) = 1. Let

(7) tú = max0_1(i«(an))-

Then <£([/„', eje) = [£u(a„), l]r. Set

(8) W = min Or'^K+i)) H [/»', eje).

Since puian+i)C [puian), l]i, t" exists and we have

(9) tl < ti+i,

(10) Il < tn" Û t:+i.

Let Cn= [i» , i»" ]c and let 0„ = ^>| C„. C„, « = 0, 1, • • • , are ordered

continua and <bn: C„—»7„= [f»(on), £u(a„+i) ]/ satisfies <Pñ1ÍPuian))=tn'

and 0» ^^«(fln+i)) —*•"■ Denote by ¿u„ the mapping sending uCIn into

(«, pvia„), 0)£73 and consider 'hn1ßn<pn: C„—>7= 7X0X0. For each

«GJO, 1, • • • } choose such a q(n) that

(11) 0 < 2g(») < 1 - vi^ñlPn4>n) ̂  1.

The claim is that there is no continuous mapping 0: C—>N(q(„)) with

pu^=<f>, i.e., that r' = iqin))CR satisfies the requirements of Property

(i).
Assume on the contrary that such a 0 exists and denote \p \ Cn with

\¡/n. Then i/'„(C„)CA7'(3(„))^~1(7n) =Xn(Afi(„)) and £M0„=0„. This

implies

pui^ntyn)   = X»"VníA =  XiTVn^n

and

(X«-V.)(C») C #,(„).

Applying Lemma 7 to X^"V»0«> we conclude that there exist two

points t„' and r„" such that

(12) {r„',Ts"} CC„ = [/„',/„"]c,

(13) (îà-WW) = W»)W) = 0,

and

(14) (*»*») W) =  1.
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By (9), (10) and (12), there is a common limit t for the two sequences

r„' and Tn" ■ However, (13) and (14) prevent pwip from being continu-

ous, which contradicts the assumption that 0 is continuous. This

establishes Lemma 4. All that remains to do in order to complete the

proof of Theorem 1 is to prove

Lemma 8. The family {Sr, pr}, rCR, defined above possesses Property

(ii).

We know already that all pr = pu\ Niq(n)) are monotone and that

all Sr are continuous curves. We also know that Sr(i)---r(n) are metric

compacta and admit monotone mappings onto 7 (see §2, 3), which

implies the connectedness of SrU)...r(n). Thus, it remains to show the

local connectedness of 5r(i)...r(»)-

4. Local connectedness of £,(»■ -rtfo-

1. Let {ril), • • ■ , r(k)\ be a finite subset of £, where r(i) is a

sequence iqii, n)), w = 0, 1, ■ ■ ■ . In order to simplify notations,

from now on we denote r(z) simply by i and 5r(i)...r(*) by Si...k. Let

s = siX • • • XskCSi...kCSiX ■ ■ ■ XSk be arbitrarily chosen. We

wish to find arbitrarily small connected neighborhoods of s having the

form (dX • • • XGk)r\Si...k, where G¿C73 are open sets and SiCGi.

Consider a rectangle P¿= Z7.-X ViXpwisi)CI3, where Ui and F¿ are

open connected sets of 7 and s»£P». Let G¿ be an (open) parallelepiped

from 73, obtained as follows. First, translate P¿ in the direction of the

w axis (in positive and negative sense) to obtain an infinite prism P'.

In order to obtain a second prism P", translate P¿ in the direction of

a straight line lying in the plane u = 0 and having a slope equal to 2

(slope with respect to the axes v and w). Then set Gi = PT\P";Pi is a

diagonal section of G,-.

Observe that GiC\Si = GiC\N(q(i,n)) is the union of a family of

straight line segments (open or possibly half open) lying in the planes

u = constant and intersecting Pf. Consequently, each point 5/

C G i (~\ Si can be joined, by a straight line segment lying in the

plane u = puisi), to a point si'CP%. This proves that each

s'CiGi X - • • X Gk)r\Si...k can be joined, within the set

(GiX • • • XGk)r\Si...k, to a point s"G(PiX • • • XPk)r~\Si...k.

Notice that (PiX • • • XPk)r\Si...k is precisely the space

SiPii~\Si, pu), where pu stands for all the maps pu: PiC\Si—»7.

All this means that, in order to establish local connectedness of

Si...k, it suffices to show that, for any given s — siX ■ ■ ■ XskCSi...k,

one can choose arbitrarily small rectangles Pi, • • • , P* so that

5(P¿nS,-, pu) be connected, i = l, • • • . k.
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2. The above stated task is an easy one if puisi) = ■ - - = puisk) < 1

since an inspection of the sets P.7^5,- shows that, for sufficiently

small P,, Pi(~\Si is either a line segment or a very simple graph con-

sisting of 2 or 3 edges meeting in one vertex. In order to settle the

case puisi) = - ■ ■ =puisk) = l, consider the rectangles P, for which

the points anXpwisi) and (1, 1, pwisi)) form a pair of opposite

vertices. Choose the same « for all i = l, - - - , k.

Clearly, the set 5(P¿ (~\ Si, pu) is the union of the sets Sm

— SiiQm X pwisi)) r\ Si, pu), m ï: n, and of a single limit point

iaxXpwisi))X • • • XiaxXpwisk))- Since Sm and Sm+i have one point

in common, it suffices to show that all Sm are connected.

Notice that the sets (QnXpw(si))r\Si look just like the broken

line £3C72X0 (see §3), the only difference being that there are

two additional straight line segments joining b with a point e = iq, q', 0)

and c with a point/= il—q, i—q', 0), 0<g'<l. We denote the union

of these segments and Kq by 7744< or merely by 77,. Thus, we have

reduced our task to showing that the space 2 = S(774(¿), pu),i = 1, ■ ■ • ,k,

is connected.

3. The proof that 2 is connected is by induction on k. Assume the

assertion true for less than k sets 7J4«). Also assume that g(l) ;£ • • •

¡£g(fc). Let 2' = S(77s{i), pu), i=l, - - - , k-l. Let f:2->7 and
f':S'—»7 be the maps induced by pu (see §2.1). Then

2 = S(2',774W,r\pu).
Denote by ai the point (q(k), 0, 0)X • ■ ■ X(s(*>, 0, 0)£2'

C774(i)X • • • XHqik-i) and by ai the point (1-qik), 0, 0)X • • •
X (1 — qik), 0, 0) C 2'. By assumption, each point a'C 2'

nf-1([ç(£), 1— qik)]i) can be joined, within that set, to the point

aó as well as to ai.

Let SkCHq(k) be such that a'XskC^C^'XHq(k)- Then sk lies on

one of these five segments: bg, be, be, cf, ch, where g= ipuic), 0, 0), h

= iPuib), 1, 0). It is clear that, given any path connecting a' and

aó in 2'Af'_1([g(Ä), 1— qik)]i), one can vary the point Sk along one

of these five segments in such a fashion that we have all the time

Ç'ia')=puisk). In other words, a'Xsk can be connected, within 2, to

one of these three points: aó Xg, aó Xe, aó Xc.

Similarly, varying a' in 2' and Sk along cb, one can join aó Xc and

ai Xb within 2. Furthermore, ai Xb can be joined with aó Xg- A

similar argument applies to aó Xe and aó Xg. The conclusion is that

all points of 2/^\(f_I( [qik), 1—qik) ]i)) belong to the same component

of 2 as aó Xg and a{ Xh. On the other hand, it is immediate that the

remaining points of 2 are easily connected (within 2) with a ó Xg or

ai Xh. This concludes the proof that 2 is connected.
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Remark. If X\, A^are two continuous curves and p¿ : Xi—->7, i = 1, 2,

are monotone mappings onto, then S(Xi, X2, pi, p2) need not be locally

connected.
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A CLAN WITH ZERO WITHOUT THE FIXED
POINT PROPERTY

HASKELL COHEN

There is a conjecture due to A. D. Wallace that a clan (i.e., a com-

pact, connected, topological semigroup with identity element) with

a zero element has the fixed point property. This is related to another

conjecture of Wallace that a compact connected topological lattice

has the fixed point property [4]. A proof of the latter conjecture for

the finite dimensional case has recently been given by Dyer and

Shields [l]. There is an example due to Kinoshita [2] of a con-

tractable continuum without the fixed point property. The purpose

of this note is to exhibit a multiplication which will make Kinoshita's

example into a clan with zero, and, thus, provide a counter example

to the first conjecture above.

We exhibit first a result which seems to be rather generally known,

but which, to the author's knowledge, does not appear in print.

Lemma. Suppose S is a topological semigroup, and f is an open or

closed map taking S onto T, a Hausdorff space. Suppose further that

fia) =/(&) and fie) =/(á) implies /(ac) =fibd). Then T can be given a

multiplication which makes it a topological semigroup and which makes

f a homomorphism.
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