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L. E. Ward, Jr., recently proved in [4] a fixed-point theorem for

certain arcwise connected spaces that generalizes a theorem of mine—

Theorem 2, below—and Borsuk's theorem [l] that an arcwise con-

nected hereditarily unicoherent metric curve has the fixed-point

property. His argument provides a proof of my result, but not of

Borsuk's. That Borsuk's class of continua is contained in his follows

from Borsuk's result only.

In this note I give a new sufficient condition for the fixed-point

property that implies Borsuk's result, and that follows from my theo-

rem and so from Ward's. I also give an example of an arcwise con-

nected continuum that contains no simple closed curve but that does

not have the fixed-point property, and prove a fixed-point theorem

for a quite special class of contractible continua.

Theorem 1. Let M be an arcwise connected compact Hausdorff space

that does not have the fixed-point property. Then M contains either (1) a

continuum Nifor which there is a map f: N1-+S1 which is onto and such

that no closed proper subset of Nt is mapped by f onto S1, and which is

such that at most one point-inverse is nondegenerate, that one being con-

nected; or (2) a continuum N2 that contains a subset R that is the one-

to-one continuous image of a half-open interval and that is dense in N2,

but that has no interior relative to N2; or (3) a continuum Ns that is the

union of a set R that is the continuous one-to-one image of a half-open

interval, and a continuum B, and for which there is a map f: N3—>K,

K being the union of the circles x2+y2 = (2/«)y, w = l, 2, 3, • • -, such

that f is one-to-one on N3 — B, such that f(B) = (0, 0), and such that no

closed proper subset of Ns is mapped by f onto K.

We will see that this is a consequence of an earlier fixed-point

theorem of the author's, proved in [5, p. 493]:

Theorem 2. Let M be an arcwise connected Hausdorff space which

is such that every monotone increasing sequence of arcs is contained in

an arc. Then M has the fixed-point property.

Note that compactness is not required in Theorem 2.
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Proof of Theorem 1. The proof is a straightforward analysis of

the possible ways the hypothesis of Theorem 2 can fail in a compact

space. Let Ai, A2, A3, • • • be a monotone increasing sequence of arcs

that is not contained in an arc. Let x be any non-end point of A\.

Then, for each n, x divides An into two arcs A¿ and A", the primes

being chosen so that, for each n, Ai. is contained in ^4„'+i. If M con-

tains a simple closed curve, then that is a continuum of type 1. Sup-

pose that M contains no simple closed curve. Then at least one of the

two monotone increasing sequences {An }, {A" } does not lie in

an arc. Hence there is no loss in assuming that \An) itself is a se-

quence of arcs all having a common end point, a. There is also no

loss in assuming that An+i—An is never empty. Let B denote the set

lim sup Cl(^4„+i — An). An argument of a familiar type shows that

B is connected. For if B were not, there exist two disjoint open sets

U and V, covering B, and each intersecting B. From some integer k

on, each set Cl(An+i — An) lies either in U or in V. But Cl(.4n+i — AH)

and C\(An+2—AH+i) intersect. Induction shows that for n>k, either

all the sets C\(An+i—An) lie in U, or all lie in V. This gives a contra-

diction.

The set UnAn = R is the one-to-one continuous image of a half-

open interval. There are three possible relations between R and B:

(1) The sets R and B are disjoint. Then there is an arc xy from some

point x of B to some point y of R, such that x = xyC\B and y = xy(~\R.

The point y separates R into two connected sets, R' and R", where

R"\Jy is an arc from a to y, and R'KJy is again the one-to-one con-

tinuous image of a half-open interval. (In this case, it is actually a

homeomorph of such an interval.) Let Ni = xy\JR'yJB. The collec-

tion consisting of the set B and of the individual points of Ni — B is

upper semi-continuous and defines a map /: Ari—*Sl satisfying the

conditions of part (1) of the conclusion of the theorem. (2) The sets

R and B intersect, but some arc au of R contains RC\B. (It may ac-

tually happen that RC\B consists of just two points.) Let R' be

the set R — au, and let Ni = R'\JB. Then in the same way as above,

we have the desired map /: Ni—tS1. (3) There is an integer k such

that U^°=i iAn+i — An) =R' is contained in B. Then N2 = B is the de-

sired continuum of the second part of the conclusion, with R' = R.

(4) No arc of R contains Ri^B, and also there is no integer k such

that U,T_i iAn+i — An) is contained in B. In this case, \JAn — B is the

union of a countable number of disjoint open intervals, Ii, I2,I3, • • • .

Let Ni = ByU\JIn- The upper-semicontinuous collection consisting of

B and of the individual points of the intervals {/«} defines a map of

A3 onto a continuum of the third type of the conclusion of Theorem 1,

satisfying the desired conditions.
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From Theorem 1, we get an easy proof of Borsuk's theorem.

Theorem 3. // M is an arcwise connected, hereditarily unicoherent

metric [or Hausdorff] curve, then M has the fixed-point property.

Proof. Note that a continuum of either of the first or third types

described in Theorem 1 is not unicoherent, so that M contains neither

of these. Next, a hereditarily unicoherent arcwise connected continuum

M contains no indecomposable subcontinuum. For suppose that 5 is

such an indecomposable subcontinuum of M. There is an arc A in M

whose end points lie in different composants of M. Then A is not a

subset of M, and A^US is not unicoherent. Theorem 3 follows then

from the next result, which seems to have escaped publication, and

which shows that M can contain no continuum of the second type.

Theorem 4. // a hereditarily unicoherent continuum S contains a

dense subset R that is the one-to-one continuous image of a half-open

interval, but that contains no interior points, then S is indecomposable.

Proof. Suppose that 5 is the union of two proper subcontinua,

A and B. Each has an interior, Int A =S — B and Int B = S — A, rela-

tive to S. We may order the points of R by their order in the half-

open interval, the image of the end point being the first point of R.

Let öi be a point of PHInt A, b be a point of PHInt B that follows

ai in R, and a2 be a point of PfMnt A that follows b in R. Then if

aia2 denotes the arc of R from ai to a2, AVJaia2 is not unicoherent.

The join, in the sense of combinatorial topology, of a Cantor set

and a point contains a subset R that is the continuous image of a

half-open interval, that is dense in the join, and that has no interior,

showing that the one-to-one property is required.

Theorem 1 does not imply Theorem 2. In fact, for each integer n> 1,

there is an arcwise connected, contractible and metric continuum con-

taining no subcontinuum of any of the three types of Theorem 1. Let X

be a continuum of dimension n — l that contains no arc; for example,

the product of n— 1 pseudo-arcs [3]. Let M be the join of X and a

point £. If 5 is a continuum in M of one of the three types, S — p

cannot lie in one interval of the join, and the projection of M — p

onto X will map some arc of S — £ onto a nondegenerate continuum

in X. However, Borsuk's hypothesis cannot hold in X, since a con-

tinuum of dimension greater than one cannot be hereditarily uni-

coherent. We can modify the example slightly, by replacing M by

two such joins, having in common only one point, on the base of

each, and show that for each integer «>1, there is an arcwise con-

nected and noncontractible metric continuum containing no subcon-

tinuum of any of the three types of Theorem 1.
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Kinoshita gave an example [2] of a contractible continuum that

has no fixed point. Since it contains a 2-cell, it contains continua of

all the types of Theorem 1. That result, however, does imply one

fixed-point theorem for contractible continua.

Theorem 5. If M is a contractible Hausdorff continuum such that

each two points are the end points of only one arc, then M has the fixed-

point property.

Proof. Suppose that M contains a continuum N satisfying condi-

tion (1) of Theorem 1. The uniqueness of arcs shows that N cannot

be a simple closed curve, so that one point-inverse under the map-

ping/of that condition is a nondegenerate continuum, B. The proof

of part (1) of Theorem 1 shows that we can assume that N is the

union of B and the continuous one-to-one image R of a half-open

interval, Rf~\B consisting of the image of the end-point of that inter-

val. Let c: MXI—>M be a contraction, satisfying c(x, 1)=£. By

uniform continuity of c, for each positive number e, there is a positive

number 5 such that if dix, y) <ô, then for all t in I, ¿jc(x, /), ciy, t)]

<e.

Let y be a point of B not in R and not p. The set ciyXl)r\R may

be empty, but if not, it is connected. For if ciyXl)f~^R = HKJK,

separated, then there exists an arc Ai in R from a point h in H to a

point k in K and there is an arc A2 in ciyXI) from h to K, and

AiKJA2 contains a simple closed curve. If e denotes the end point of

R, which is in B, it is conceivable that e is not in c(yX/). It is not

possible, however, that for some point x in R, ciy XI) contains the

set Rx consisting of all the points z in R such that x is on the arc ez

of R. For suppose that this occurred. Then ciy XI) contains B. Let

U be a relatively open connected subset of the Peano continuum

ciy XI) that contains e (which is in N), but does not contain x. Let

x' be a point of RXC\ U. There is an arc x'e in U, and in R there are

arcs ex, xx'. The union x'e\Jex\Jxx' contains a simple closed curve,

which is impossible. We can thus conclude that R —ciyXI) contains

a set Rx — x, for some x in R; x will be in ciyXl). If z is a point of Rx,

then cizXl) contains the arc xz of R; otherwise xz\JcizXl)^JciyXl)

contains a simple closed curve.

Now let ei, É2, €3, • • • be a sequence of positive numbers approach-

ing 0. For each en, let 5„ be the corresponding number S defined in

the last sentence of the first paragraph of this proof, and let x„ be a

point of Rx within 5n of y. Then d[c{x„, t), c(yo, /)] <en for all t in /.

Let z be a fixed point of Rx; there is no loss in supposing that z is in

each arc xx„ in R. Then by our last paragraph, z is in each set

cixnXl). For each e„, then, diz, ciyXl)) <e„, so that z belongs to the
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set ciyXl)- But this is a contradiction.

Modifications of this argument dispose of each of the other two

cases.

Either from Theorem 5 or, quicker, from Borsuk's theorem, it

follows that a one-dimensional contractible continuum C has the

fixed-point property, since every subcontinuum is homologically

acyclic, so that C contains no simple closed curve.

Let Ci be a continuum in the lower half xy-plane joining the point

(2, 0, 0) to the interval [ — 3, — l] of the x-axis, Ci being homeo-

morphic to the closure of the graph of y = sin 1/x, 0<x^7r, with the

interval [ — 3, — l] corresponding to the limiting interval of the

graph. Let C% be the image of Ci under the rotation of the xy-plane

about the origin through an angle of it. Let Li and L2 be straight-

line intervals joining (2, 0, 0) and (-2, 0, 0) to (0, 0, 1). Let R be a

set homeomorphic to a half-open interval that (1) has only (0, 0, 1)

in common with GU C2 WLi WL2 and (2) "spirals down" to GUC2

in such a way that (a) there is a sequence of arcs X\, X2, X3, ■ ■ • fill-

ing up R such that Xii~\Xj is empty for j¿¿i +1, i—1, and is an end

point of each iorj = i4-1, i—1, and (b) Ci = lim X2j and C2 = lim X2j+i.

Let M= Ci<JCi\JLiVJL2\JR. Then M is arcwise connected by unique

arcs, and is compact. We define a continuous map /: M—>M that

has no fixed point. Let/i: M^M be a map that on Ci\JC2\JLiUL2

is the rotation of E3 about the Z-axis through an angle of ir, and that

on R is the identity; /i is not continuous. Let f2: M—*M be a map

that is a homeomorphism on R and maps each arc Xn onto Xn+i] that

is the identity on CiUC2, and that maps each set L¡,j=l, 2, homeo-

morphically onto L,\JXi, the points (2, 0, 0) and ( — 2, 0, 0) being

kept fixed ;/2 is not continuous either. The composition f=fifi, how-

ever, is continuous, and no point is left fixed.

I have no such example in the plane, nor do I have a continuum

M that does not have the fixed-point property for homeomorphisms.
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