FIXED-POINT THEOREMS FOR ARCWISE
CONNECTED CONTINUA!

G. S. YOUNG

L. E. Ward, Jr., recently proved in [4] a fixed-point theorem for
certain arcwise connected spaces that generalizes a theorem of mine—
Theorem 2, below—and Borsuk’s theorem [1] that an arcwise con-
nected hereditarily unicoherent metric curve has the fixed-point
property. His argument provides a proof of my result, but not of
Borsuk’s. That Borsuk’s class of continua is contained in his follows
from Borsuk’s result only.

In this note I give a new sufficient condition for the fixed-point
property that implies Borsuk’s result, and that follows from my theo-
rem and so from Ward’s. I also give an example of an arcwise con-
nected continuum that contains no simple closed curve but that does
not have the fixed-point property, and prove a fixed-point theorem
for a quite special class of contractible continua.

THEOREM 1. Let M be an arcwise connected compact Hausdorff space
that does not have the fixed-point property. Then M contains either (1) a
continuum Ny for which there is a map f: Ni—S* which is onto and such
that no closed proper subset of Ny is mapped by f onto S*, and which is
such that at most one point-inverse is nondegenerate, that one being con-
nected; or (2) a continuum N, that contains a subset R that is the one-
lo-one continuous image of a half-open interval and that is dense in N,
but that has no interior relative to No; or (3) a continuum Nj that is the
union of a set R that is the continuous one-to-one image of a half-open
interval, and a continuum B, and for which there is a map f: N3—K,
K being the union of the circles x*+y*=(2/n)y, n=1,2,3, - - -, such
that f is one-to-one on N3— B, such that f(B) = (0, 0), and such that no
closed proper subset of N3 is mapped by f onto K.

We will see that this is a consequence of an earlier fixed-point
theorem of the author’s, proved in [5, p. 493]:

THEOREM 2. Let M be an arcwise connected Hausdorff space which
s such that every monotone increasing sequence of arcs is contained in
an arc. Then M has the fixed-point property.

Note that compactness is not required in Theorem 2.

Presented to the Society, January 29, 1960; received by the editors February 4,
1960.

1 Part of the work on this paper was done under a grant by the National Science
Foundation.

880



ARCWISE CONNECTED CONTINUA 881

Proor oF THEOREM 1. The proof is a straightforward analysis of
the possible ways the hypothesis of Theorem 2 can fail in a compact
space. Let 4;, 45, 43, -+ - - be a monotone increasing sequence of arcs
that is not contained in an arc. Let x be any non-end point of 4;.
Then, for each #, x divides 4, into two arcs 44 and A4,’, the primes
being chosen so that, for each #, 4, is contained in 4./41. If M con-
tains a simple closed curve, then that is a continuum of type 1. Sup-
pose that M contains no simple closed curve. Then at least one of the
two monotone increasing sequences {A.}, {4’} does not lie in
an arc. Hence there is no loss in assuming that {A4.} itself is a se-
quence of arcs all having a common end point, a. There is also no
loss in assuming that A,41— A4, is never empty. Let B denote the set
lim sup Cl(An;1—A4,). An argument of a familiar type shows that
B is connected. For if B were not, there exist two disjoint open sets
U and V, covering B, and each intersecting B. From some integer k
on, each set Cl1(4 41— A4,) lies either in U or in V. But Cl(4,p1—44,)
and Cl(A,y2—A441) intersect. Induction shows that for #n> k&, either
all the sets Cl(4,41—A4,) liein U, or all lie in V. This gives a contra-
diction.

The set U, A.=R is the one-to-one continuous image of a half-
open interval. There are three possible relations between R and B:
(1) The sets R and B are disjoint. Then there is an arc xy from some
point x of B to some point y of R, such that x=xyMN\B and y=xyM\R.
The point y separates R into two connected sets, R’ and R’’, where
R'"Uy is an arc from a to y, and R'\Uy is again the one-to-one con-
tinuous image of a half-open interval. (In this case, it is actually a
homeomorph of such an interval.) Let Ny=xy\UR’\UB. The collec-
tion consisting of the set B and of the individual points of Ny—B is
upper semi-continuous and defines a map f: N1;—S? satisfying the
conditions of part (1) of the conclusion of the theorem. (2) The sets
R and B intersect, but some arc au of R contains RNB. (It may ac-
tually happen that RMB consists of just two points.) Let R’ be
the set R—au, and let N;=R’\UB. Then in the same way as above,
we have the desired map f: N;—S (3) There is an integer k such
that Uy, (Ans1—A,) =R’ is contained in B. Then N,=B is the de-
sired continuum of the second part of the conclusion, with R’=R.
(4) No arc of R contains RNB, and also there is no integer % such
that Uy (A.41—A4,) is contained in B. In this case, UA,—B is the
union of a countable number of disjoint open intervals, I1, I3, I3, - - -
Let N3y=B\UUI,. The upper-semicontinuous collection consisting of
B and of the individual points of the intervals {I,} defines a map of
N3 onto a continuum of the third type of the conclusion of Theorem 1,
satisfying the desired conditions.
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From Theorem 1, we get an easy proof of Borsuk’s theorem.

THEOREM 3. If M is an arcwise connected, hereditarily unicoherent
metric [or Hausdorff] curve, then M has the fixed-point property.

ProoF. Note that a continuum of either of the first or third types
described in Theorem 1 is not unicoherent, so that M contains neither
of these. Next, a hereditarily unicoherent arcwise connected continuum
M contains no indecomposable subcontinuum. For suppose that S is
such an indecomposable subcontinuum of M. There is an arc 4 in M
whose end points lie in different composants of M. Then A is not a
subset of M, and A\US is not unicoherent. Theorem 3 follows then
from the next result, which seems to have escaped publication, and
which shows that M can contain no continuum of the second type.

THEOREM 4. If a hereditarily unicoherent continuum S contains a
dense subset R that is the one-to-one continuous image of ¢ half-open
interval, but that contains no interior points, then S is indecomposable.

PRroOF. Suppose that S is the union of two proper subcontinua,
A and B. Each has an interior, Int A=S—B and Int B=S—4, rela-
tive to S. We may order the points of R by their order in the half-
open interval, the image of the end point being the first point of R.
Let a; be a point of RNInt 4, b be a point of RNInt B that follows
a; in R, and a; be a point of RNInt A that follows b in R. Then if
a1a2 denotes the arc of R from a, to @z, A\Ja,a; is not unicoherent.

The join, in the sense of combinatorial topology, of a Cantor set
and a point contains a subset R that is the continuous image of a
half-open interval, that is dense in the join, and that has no interior,
showing that the one-to-one property is required.

Theorem 1 does not imply Theorem 2. In fact, for each integer n>1,
there is an arcwise connected, contractible and metric continuum con-
taining no subcontinuum of any of the three types of Theorem 1. Let X
be a continuum of dimension z —1 that contains no arc; for example,
the product of #—1 pseudo-arcs [3]. Let M be the join of X and a
point p. If S is a continuum in M of one of the three types, S—p
cannot lie in one interval of the join, and the projection of M —p
onto X will map some arc of S—p onto a nondegenerate continuum
in X. However, Borsuk’s hypothesis cannot hold in X, since a con-
tinuum of dimension greater than one cannot be hereditarily uni-
coherent. We can modify the example slightly, by replacing M by
two such joins, having in common only one point, on the base of
each, and show that for each integer n>1, there is an arcwise con-
nected and noncontractible metric continuum containing no subcon-
tinuum of any of the three types of Theorem 1.
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Kinoshita gave an example [2] of a contractible continuum that
has no fixed point. Since it contains a 2-cell, it contains continua of
all the types of Theorem 1. That result, however, does imply one
fixed-point theorem for contractible continua.

THEOREM 5. If M is a contractible Hausdorff continuum such that
each two points are the end points of only one arc, then M has the fixed-
point property.

Proor. Suppose that M contains a continuum N satisfying condi-
tion (1) of Theorem 1. The uniqueness of arcs shows that NV cannot
be a simple closed curve, so that one point-inverse under the map-
ping f of that condition is a nondegenerate continuum, B. The proof
of part (1) of Theorem 1 shows that we can assume that N is the
union of B and the continuous one-to-one image R of a half-open
interval, RN B consisting of the image of the end-point of that inter-
val. Let ¢: M XI—M be a contraction, satisfying c(x, 1)=p. By
uniform continuity of ¢, for each positive number ¢, there is a positive
number & such that if d(x, y) <8, then for all ¢ in I, d[c(x, t), c(3, )]
<e.

Let y be a point of B not in R and not p. The set ¢(y XI)/\R may
be empty, but if not, it is connected. For if ¢(y XI)"\R=H\UK,
separated, then there exists an arc 4; in R from a point # in H to a
point & in K and there is an arc 4. in ¢(yXI) from &k to K, and
A:\JA; contains a simple closed curve. If e denotes the end point of
R, which is in B, it is conceivable that e is not in ¢(y XI). It is not
possible, however, that for some point x in R, ¢(y XI) contains the
set R, consisting of all the points z in R such that x is on the arc ez
of R. For suppose that this occurred. Then ¢(yXI) contains B. Let
U be a relatively open connected subset of the Peano continuum
¢(yXI) that contains e (which is in N), but does not contain x. Let
%’ be a point of R,MNU. There is an arc x’¢ in U, and in R there are
arcs ex, xx’. The union x’e\Jex\Uxx’ contains a simple closed curve,
which is impossible. We can thus conclude that R—c¢(yXI) contains
a set R,—x, for some x in R; x will be in ¢(y XI). If z is a point of R,
then ¢(z X I) contains the arc xz of R; otherwise xz2\Uc(zXI)\Uc(yXI)
contains a simple closed curve.

Now let €, €, €, * - - be a sequence of positive numbers approach-
ing 0. For each e,, let 8, be the corresponding number & defined in
the last sentence of the first paragraph of this proof, and let x, be a
point of R, within 8, of y. Then d[c(x., ), ¢(¥o, )] <e, for all ¢ in I.
Let z be a fixed point of R,; there is no loss in supposing that z is in
each arc xx, in R. Then by our last paragraph, z is in each set
¢(xsXI). For each e,, then, d(z, c(y XI)) <e,, so that z belongs to the
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set c(yXI). But this is a contradiction.

Maodifications of this argument dispose of each of the other two
cases.

Either from Theorem S or, quicker, from Borsuk’s theorem, it
follows that a one-dimensional contractible continuum C has the
fixed-point property, since every subcontinuum is homologically
acyclic, so that C contains no simple closed curve.

Let C; be a continuum in the lower half xy-plane joining the point
(2, 0, 0) to the interval [—3, —1] of the x-axis, C: being homeo-
morphic to the closure of the graph of y=sin 1/x, 0 <x =, with the
interval [—3, —1] corresponding to the limiting interval of the
graph. Let C; be the image of C; under the rotation of the xy-plane
about the origin through an angle of 7. Let L, and L, be straight-
line intervals joining (2, 0, 0) and (—2, 0, 0) to (0, 0, 1). Let R be a
set homeomorphic to a half-open interval that (1) has only (0, 0, 1)
in common with Gi\\UC,\JL,\JL; and (2) “spirals down” to Ci\UC,
in such a way that (a) there is a sequence of arcs X;, X,, X3, - - - fill-
ing up R such that X;N\X; is empty for j#44+1, 4—1, and is an end
point of each for j=4+41,7—1,and (b) Ci=lim X,;and Co=1lim X,j;:.
Let M=C\JC\JL,\JL,\JUR. Then M is arcwise connected by unique
arcs, and is compact. We define a continuous map f: M—M that
has no fixed point. Let fi: M— M be a map that on G;\UC\IL,\ UL,
is the rotation of E3 about the Z-axis through an angle of 7, and that
on R is the identity; fi is not continuous. Let f;: M—M be a map
that is a homeomorphism on R and maps each arc X, onto X,41; that
is the identity on Ci\JC(,, and that maps each set L;, j=1, 2, homeo-
morphically onto L;\JX;, the points (2, 0, 0) and (—2, 0, 0) being
kept fixed; fs is not continuous either. The composition f=fsfi, how-
ever, is continuous, and no point is left fixed.

I have no such example in the plane, nor do I have a continuum
M that does not have the fixed-point property for homeomorphisms.
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