ON A QUADRATIC DIOPHANTINE INEQUALITY

FRED SUPNICK

1. Introduction. Let C be an n-cube and S the n-sphere circumscribed about C. Keeping C fixed let S be moved so that its center falls at some point P inside or on C. We pose the problem: How can vertices of C falling inside or on S_{P} (the subscript denotes the center) be selected?

Analytically expressed, let C be the unit n-cube the coordinates of whose vertices are zeros or ones (on a Cartesian coordinate system in E_{n}). Let P be the point (x_{1}, \cdots, x_{n}) with $0 \leqq x_{i} \leqq 1(i=1, \cdots, n)$. S_{P} is of diameter $n^{1 / 2}$. We seek lattice points (y_{1}, \cdots, y_{n}) $y_{i}=0$ or 1 ($i=1, \cdots, n$) satisfying

$$
\begin{equation*}
\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2} \leqq n / 4 \tag{1.1}
\end{equation*}
$$

Thus, trivially, one point $\left(y_{1}, \cdots, y_{n}\right)$ may always be obtained if we let $y_{i}=0$ if $x_{i} \leqq 1 / 2$ and $y_{i}=1$ if $x_{i}>1 / 2$.

Of course, one obvious method would be to substitute (the coordinates of) the vertices of C into (1.1) and to select those which satisfy it; however, except for small n this is a prohibitive operation (even with mechanical aid). The problem therefore is one of minimizing the number of operations in obtaining solutions of the desired type.

In this paper we obtain a process for immediately associating with any $\left(x_{1}, \cdots, x_{n}\right)\left(0 \leqq x_{i} \leqq 1, i=1, \cdots, n, n \geqq 4\right)$ a class of lattice points $\left(y_{1}, \cdots, y_{n}\right) y_{i}=0$ or $1(i=1, \cdots, n)$ satisfying (1.1).

We note that a lemma to a theorem of D. Warncke and the author ${ }^{1}$ establishes the following class of solutions for the case $n=4$: Let $\left(x_{i_{1}}, \cdots, x_{i_{4}}\right)$ be a rearrangement G of $\left(x_{1}, \cdots, x_{4}\right)$ for which

$$
\left|x_{i_{1}}-1 / 2\right| \leqq\left|x_{i_{2}}-1 / 2\right| \leqq\left|x_{i_{3}}-1 / 2\right| \leqq\left|x_{i_{4}}-1 / 2\right|
$$

Let $y_{i_{1}}^{\prime}=0$ and $y_{i_{1}}^{\prime \prime}=1$, and

$$
y_{i_{j}}^{\prime}=y_{i_{j}}^{\prime \prime}=\begin{array}{ll}
0 & \text { if } x_{i_{j}} \leqq 1 / 2 \\
1 & \text { if } x_{i_{j}}>1 / 2
\end{array}
$$

for $j=2,3$, 4. Applying G^{-1} to ($y_{i_{1}}^{\prime}, \cdots, y_{i_{4}}^{\prime}$) and ($y_{i_{1}}^{\prime \prime}, \cdots, y_{i_{4}}^{\prime \prime}$) we obtain lattice points ($y_{1}^{\prime}, \cdots, y_{4}^{\prime}$) and ($y_{1}^{\prime \prime}, \cdots, y_{4}^{\prime \prime}$) respectively (with coordinates zeros or ones) satisfying (1.1).

Received by the editors September 2, 1959, and, in revised form, March 16, 1960.
${ }^{1}$ D. Warncke and F. Supnick, On the covering of E_{n} by spheres, Proc. Amer. Math. Soc. vol. 8 (1957) pp. 299-303, 1160. See §2.
2. Some definitions and statement of results. An ordered set of integers $\left(a_{1}, \cdots, a_{r}\right)\left(1 \leqq a_{1}<a_{2}<\cdots<a_{r}, 1 \leqq r \leqq[n / r], n \geqq 4\right)$ will be called a primary set of order r if

$$
\begin{equation*}
a_{i} \leqq(n-3)-4(r-i) \quad(i=1, \cdots, r) \tag{2.1}
\end{equation*}
$$

Let $\left(x_{1}, \cdots, x_{n}\right)\left(0 \leqq x_{i} \leqq 1, i=1, \cdots, n ; n \geqq 4\right)$ be arbitrarily chosen (but held fixed in the following argument). Let ($x_{i_{1}}, \cdots, x_{i_{n}}$) be a rearrangement H of $\left(x_{1}, \cdots, x_{n}\right)$ for which

$$
\begin{equation*}
\left.\left|x_{i_{1}}-\frac{1}{2}\right| \leqq\left|x_{i_{2}}-\frac{1}{2}\right| \leqq \cdots \leqq x_{i_{n}}-\frac{1}{2} \right\rvert\, . \tag{2.2}
\end{equation*}
$$

Let z_{1}, \cdots, z_{n} denote $x_{i_{1}}, \cdots, x_{i_{n}}$ respectively.
Now, each primary set $\left(a_{1}, \cdots, a_{r}\right)$ induces a partition ${ }^{2}$

$$
\{1, \cdots, n\}=F+N
$$

where

$$
\begin{equation*}
F=\left\{a_{1}, \cdots, a_{r}\right\}, \quad N=\{1, \cdots, n\}-\left\{a_{1}, \cdots, a_{r}\right\} \tag{2.3}
\end{equation*}
$$

Let k range over $\{1, \cdots, n\}$:
(i) if $k \in F$, let

$$
p_{k}=\begin{array}{ll}
0 & \text { if } z_{k}>1 / 2 \tag{2.4}\\
1 & \text { if } z_{k} \leqq 1 / 2
\end{array}
$$

(ii) if $k \in N$, let

$$
p_{k}=\begin{array}{ll}
0 & \text { if } z_{k} \leqq 1 / 2 \tag{2.5}\\
1 & \text { if } z_{k}>1 / 2
\end{array}
$$

Now, because of (2.1), with each element a_{i} of F (cf. (2.3)) may be associated integers b_{i}, c_{i}, d_{i} of N (cf. (2.3)) such that $a_{i}<b_{i}<c_{i}<d_{i}$, holds for ($i=1, \cdots, r$), and such that (the intersection) $\left\{a_{j}, b_{j}, c_{j}, d_{j}\right\}$ $\cdot\left\{a_{k}, b_{k}, c_{k}, d_{k}\right\}$ is null for all pairs $j, k \in\{1, \cdots, r\}(j \neq k)$. Recalling the solutions for the case $n=4$ (at the end of $\S 1$) we have,

$$
\left(z_{a_{i}}-p_{a_{i}}\right)^{2}+\left(z_{b_{i}}-p_{b_{i}}\right)^{2}+\left(z_{c_{i}}-p_{c_{i}}\right)^{2}+\left(z_{d_{i}}-p_{d_{i}}\right)^{2} \leqq 1
$$

for $(i=1, \cdots, r)$. We note that $\left(z_{i}-p_{i}\right)^{2} \leqq 1 / 4$ for each element i of

$$
\{1, \cdots, n\}-\sum_{i=1}^{r}\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}
$$

[^0](if indeed there are such). Therefore $\sum_{k=1}^{n}\left(z_{k}-p_{k}\right)^{2} \leqq n / 4$. Applying H^{-1} to (p_{1}, \cdots, p_{n}) we obtain a lattice point $\left(y_{1}, \cdots, y_{n}\right)\left(y_{i}=0\right.$ or 1$)$ satisfying (1.1). We call $\left(y_{1}, \cdots, y_{n}\right)$ an (H)-lattice-point (since it depends on H) associated with the primary set (a_{1}, \cdots, a_{r}). The lattice point obtained by letting $y_{i}=0$ if $x_{i} \leqq 1 / 2$ and $y_{i}=1$ if $x_{i}>1 / 2(i=1, \cdots, n)$ will be referred to as the (H)-lattice-point associated with the null set (which we here call the "primary set of order zero" for convenience of exposition).

Statement of results. Let $A_{i, j}$ denote the element in the i th row and j th column of the double array:

$$
\begin{array}{lllllllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \cdots \\
0 & 0 & 0 & 0 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 22 & 30 & 39 & 49 & 60 & 72 & 85 & 99 & 114 & \cdots \tag{2.6}\\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 140 & 200 & 272 & 357 & 456 & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 969 & \cdots
\end{array}
$$

i.e., (i) if $i=1$, then $A_{i, j}=1$ for all positive integers j, (ii) if $i>1$, then $A_{i, j}=0$ for each positive integer $j \leqq 4(i-1)$, and

$$
\begin{equation*}
A_{i, j}=\sum_{k=4(i-2)+1}^{j-1} A_{i-1, k} \tag{2.7}
\end{equation*}
$$

for each positive integer $j>4(i-1)$.
First an algorithm is given (cf. §4) for listing all primary sets of order $r(1 \leqq r \leqq[n / 4])$, and the following theorem concerning the "length" of a complete listing is established:

Theorem 1. For a given $n \geqq 4$, the total number of primary sets of orders $0,1, \cdots,[n / 4]$ is

$$
\theta \equiv 1+\sum_{j=1}^{n-3} \sum_{i=1}^{[n / 4]} A_{i, j} .
$$

Theorem 2. (i) Each primary set (which may be the primary set of order zero) has one and only one associated (H)-lattice-point, and (ii) distinct primary sets have distinct associated (H)-lattice-points.

We thus have the following constructive process for obtaining vertices of C inside or on S_{P} :

Step 1. Once $n \geqq 4$ is specified, list all θ primary sets. This may be done by the algorithm of $\S 4$.

Step 2. Once $\left(x_{1}, \cdots, x_{n}\right)$ is specified determine a rearrangement H
yielding $\left(z_{1}, \cdots, z_{n}\right)$. Fixing attention on each primary set in turn, apply (2.4) and (2.5) to (z_{1}, \cdots, z_{n}), thus obtaining (p_{1}, \cdots, p_{n}); we then apply H^{-1} to $\left(p_{1}, \cdots, p_{n}\right)$ and obtain an (H)-lattice-point satisfying (1.1).

Remark. If $\left(x_{1}, \cdots, x_{n}\right)$ is such that $\left|x_{i}-1 / 2\right| \neq\left|x_{j}-1 / 2\right|$ for all pairs $i, j(i \neq j)$, then there is only one rearrangement H satisfying (2.2). If $\left(x_{1}, \cdots, x_{n}\right)$ is such that $\left|x_{i}-1 / 2\right|=\left|x_{j}-1 / 2\right|$ for some pair $i, j(i \neq j)$, let

$$
\begin{equation*}
H_{1}:\left(x_{i_{1}}, \cdots, x_{i_{n}}\right), \quad H_{2}:\left(x_{j_{1}}, \cdots, x_{j_{n}}\right), \cdots \tag{2.8}
\end{equation*}
$$

be all the rearrangements of $\left(x_{1}, \cdots, x_{n}\right)$ such that

$$
\begin{aligned}
&\left|x_{i_{1}}-1 / 2\right| \leqq \cdots \\
&\left|x_{j_{1}}-1 / 2\right| \leqq \leqq x_{i_{n}}-1 / 2 \mid \\
&
\end{aligned}
$$

Let all $\theta\left(H_{1}\right)$-lattice-points be obtained. To find those $\left(H_{2}\right)$-latticepoints which are not $\left(H_{1}\right)$-lattice-points, we need only consider primary sets $\left(a_{1}, \cdots, a_{r}\right)$ such that $\left(j_{a_{1}}, \cdots, j_{a_{r}}\right) \not \equiv\left(i_{a_{1}}, \cdots, i_{a_{r}}\right)$. Bearing this in mind at all times, we may obtain all other lattice points associated with each element of (2.8) without duplications.
3. A lemma. Let $\Delta_{r}(n)(1 \leqq r \leqq[n / 4])$ denote the matrix in the upper left-hand corner of (2.6) consisting of all elements $A_{i, j}(i=1, \cdots, r$; $j=1, \cdots, n-3$). It will be convenient to introduce a new designation for an arbitrary element of $\Delta_{r}(n)$, say $s_{i, k}$, where i indicates the i th row from the top (as before), but k now indicates the k th column from the right; (thus $A_{i, j}=s_{i, k}$ where $k=n-2-j(j=1, \cdots, n-3)$).

Lemma. Let $s_{i, k}(i>1)$ be any nonzero element of $\Delta_{m}(n)(m=[n / 4])$ such that $s_{i, k+1}$ is not zero. Then

$$
\begin{equation*}
s_{i, k}=s_{i, k+1}+s_{i-1, k+2}+s_{i-2, k+3}+\cdots+1 \tag{3.1}
\end{equation*}
$$

Proof. From (2.7) it follows that $s_{i, k}=s_{i, k+1}+s_{i-1, k+1}$. Since $s_{i-1, k+1}=s_{i-1, k+2}+s_{i-2, k+2}$, we obtain

$$
\begin{equation*}
s_{i, k}=s_{i, k+1}+s_{i-1, k+2}+s_{i-2, k+2} \tag{3.2}
\end{equation*}
$$

Repeating this argument on the last term of (3.2), etc., we finally obtain (3.1).
4. An algorithm. Let S_{r} denote the sum of the elements of the r th row of $\Delta_{r}(n)(1 \leqq r \leqq[n / 4], n \geqq 4)$. Let q_{0} be an integer satisfying $1 \leqq q_{0} \leqq S_{r}$. We shall associate with q_{0} a primary set $\left(j_{0}, j_{1}, \cdots, j_{r-1}\right)$ as follows:
(1) Determination of j_{0}. We notice that

$$
\begin{equation*}
S_{r}=s_{r, v_{0}}+s_{r, v_{0}-1}+\cdots+s_{r, 2}+s_{r, 1} \tag{4.1}
\end{equation*}
$$

where $v_{0}=(n-3)-(r-1) 4$; there are $(r-1) 4$ zeros to the left of $s_{r, v_{0}}$ in the last row of $\Delta_{r}(n)$. Then from (4.1) we see that there is one and only one integer j_{0} satisfying $1 \leqq j_{0} \leqq(n-3)-(r-1) 4$ such that

$$
\begin{equation*}
\sum_{j=j_{0}+1}^{v_{0}} s_{r, j}<q_{0} \leqq \sum_{j=j_{0}}^{v_{0}} s_{r, j} \tag{4.2}
\end{equation*}
$$

(here and below, expressions of the form $\sum_{j=A}^{B} U_{j}$ where $B<A$ are to be taken as zero).
(2) Determination of j_{1}. We notice that

$$
\begin{equation*}
s_{r, j_{0}}=s_{r-1, v_{1}}+s_{r-1, v_{1}-1}+\cdots+s_{r-1, j_{0}+1} \tag{4.3}
\end{equation*}
$$

where $v_{1}=(n-3)-(r-2) 4$; there are $(r-2) 4$ zeros to the left of $s_{r-1, v_{1}}$ in the $(r-1)$ st row of $\Delta_{r}(n)$. Let

$$
\begin{equation*}
q_{1}=q_{0}-\sum_{j=j_{0}+1}^{v_{0}} s_{r, j} ; \tag{4.4}
\end{equation*}
$$

then $1 \leqq q_{1} \leqq s_{r, j_{0}}$. From (4.3) we see that there is one and only one integer j_{1} satisfying $j_{0}<j_{1} \leqq(n-3)-(r-2) 4$ such that

$$
\begin{equation*}
\sum_{j=j_{1}+1}^{v_{1}} s_{r-1, j}<q_{1} \leqq \sum_{j=j_{1}}^{v_{1}} s_{r-1, j} . \tag{4.5}
\end{equation*}
$$

(3) Let us suppose that integers $j_{0}, j_{1}, \cdots, j_{i-1}$ have been determined, each $j_{0}(g \in\{1,2, \cdots, i-1\})$ being the only integer which satisfies

$$
j_{\theta-1}<j_{\theta} \leqq(n-3)-(r-(g+1)) 4 \equiv v_{0}
$$

and

$$
\begin{equation*}
\sum_{j=j_{o+1}}^{v_{0}} s_{r-0, j}<q_{\theta} \leqq \sum_{j=j_{o}}^{v_{0}} s_{r-0, j}, \tag{4.6}
\end{equation*}
$$

where

$$
q_{o}=q_{o-1}-\sum_{j-j_{0-1}+1}^{v_{o-1}} s_{r-(o-1), j},
$$

i.e.,

$$
q_{0}=q_{0}-\left(\sum_{j=j_{0}+1}^{v_{0}} s_{r, j}+\sum_{j=j_{i}+1}^{v_{1}} s_{r-1, j}+\cdots+\sum_{j=j_{0-1}+1}^{v_{0-1}} s_{r-(\sigma-1), j}\right) .
$$

We show how to determine j_{i}. We notice that (if $r-(i-1) \geqq 2$) $s_{r-(i-1), j_{i-1}}=s_{r-i, v_{i}}+s_{r-i,\left(v_{i}-1\right)}+\cdots+s_{r-i,\left(j_{i-1}+1\right)}$, where $v_{i}=v_{0}+4 i$; there are $(r-(i+1)) 4$ zeros to the left of $s_{r-i, v_{i}}$ in the $(r-i)$ th row of $\Delta_{r}(n)$. Let

$$
\begin{equation*}
q_{i}=q_{i-1}-\sum_{j=j_{i-1}+1}^{v_{i-1}} s_{r-(i-1), j} . \tag{4.8}
\end{equation*}
$$

Then, letting $g=i-1$ in (4.6), and subtracting the left sum, we obtain $1 \leqq q_{i} \leqq s_{r-(i-1), j_{i-1}}$. From (4.7) we see that there is one and only one integer j_{i} satisfying

$$
\begin{equation*}
j_{i-1}<j_{i} \leqq(n-3)-(r-(i+1)) 4 \equiv v_{i} \tag{4.9}
\end{equation*}
$$

such that

$$
\begin{equation*}
\sum_{j=j_{i}+1}^{v_{i}} s_{r-i, j}<q_{i} \leqq \sum_{j=j_{i}}^{v_{i}} s_{r-i, j} \tag{4.10}
\end{equation*}
$$

Repeatedly selecting the j_{i} as described in (3) (immediately above), we finally obtain the primary set $\left(j_{0}, \cdots, j_{r-1}\right)$ which we associate with q_{0}.

From the manner in which $\left(j_{0}, \cdots, j_{r-1}\right)$ was selected we may now show that

$$
\begin{equation*}
q_{0}=1+\sum_{k=0}^{r-1} \sum_{j=j_{k+1}}^{v_{k}} s_{r-k, j} . \tag{4.11}
\end{equation*}
$$

Proof of (4.11). Let

$$
\begin{equation*}
\beta_{k}=\sum_{j=j_{k+1}}^{v_{k}} s_{r-k, j} \tag{4.12}
\end{equation*}
$$

Then from (4.8) $q_{0}=q_{1}+\beta_{0}, q_{1}=q_{2}+\beta_{1}, \cdots$; therefore

$$
\begin{equation*}
q_{0}=q_{r-1}+\beta_{r-2}+\beta_{r-3}+\cdots+\beta_{0} \tag{4.13}
\end{equation*}
$$

But from (4.10), since $s_{1, j}=1$

$$
q_{r-1}=\sum_{j-j r-1}^{v_{r-1}} s_{1, j}=1+\beta_{r-1}
$$

and (4.13) becomes

$$
\begin{equation*}
q_{0}=1+\sum_{k=0}^{r-1} \beta_{k} \tag{4.14}
\end{equation*}
$$

Substituting (4.12) into (4.14) we obtain (4.11).
5. The number of primary sets $\left(a_{1}, \cdots, a_{r}\right)$. With any integer $g_{0}\left(1 \leqq g_{0} \leqq S_{r}\right)$ we have associated a primary set $\left(j_{0}, j_{1}, \cdots, j_{r-1}\right)$ determined as in §4.

We now show that any primary set $\left(h_{0}, h_{1}, \cdots, h_{r-1}\right)$ is an associate of an integer I satisfying $1 \leqq I \leqq S_{r}$.
(A) Let

$$
\begin{equation*}
I \equiv 1+\sum_{k=0}^{r-1} \sum_{j=h_{k}+1}^{v_{k}} s_{r-k, j} \tag{5.1}
\end{equation*}
$$

It is clear that $I \geqq 1$. We first prove that

$$
\begin{equation*}
I \leqq S_{r} \tag{5.2}
\end{equation*}
$$

Proof of (5.2). (i) Suppose there are at least two nonzero terms in the last row of $\Delta_{r}(n)$. Then

$$
\begin{aligned}
1+\sum_{k=0}^{r-1} \sum_{j=h_{k}+1}^{v_{k}} s_{r-k, j} & \leqq 1+\sum_{k=0}^{r-1} \sum_{j=k+2}^{v_{k}} s_{r-k, j} \\
& =1+\sum_{k=1}^{r-1} \sum_{j=k+2}^{v_{k}} s_{r-k, j}+\sum_{j=2}^{v_{0}} s_{r, j} \\
& =1+\sum_{k=1}^{r-1} s_{r-(k-1), k+1}+\sum_{j=2}^{v_{0}} s_{r, j} \\
& =s_{r, 1}+\sum_{j=2}^{v_{0}} s_{r, j}=S_{r} .
\end{aligned}
$$

(ii) Suppose there is only one nonzero term in the last row of $\Delta_{r}(n)$. Then

$$
\begin{aligned}
1+\sum_{k=0}^{r-1} \sum_{j=h_{k}+1}^{v_{k}} s_{r-k, j} & \leqq 1+\sum_{k=0}^{r-1} \sum_{j=k+2}^{v_{k}} s_{r-k, j} \\
& =1+\sum_{k=1}^{r-1} \sum_{j=k+2}^{v_{k}} s_{r-k, j} \\
& =1+\sum_{k=2}^{r-1} \sum_{j=k+2}^{v_{k}} s_{r-k, j}+\sum_{j=3}^{v_{1}} s_{r-1, j} \\
& =1+\sum_{k=2}^{r-1} s_{r-(k-1), k+1}+\sum_{j=3}^{v_{1}} s_{r-1, j} \\
& =s_{r-1,2}+\sum_{j=3}^{v_{1}} s_{r-1, j} \\
& =s_{r, 1} \equiv S_{r} .
\end{aligned}
$$

(B) We now show that the primary set ($h_{0}, h_{1}, \cdots, h_{r-1}$) is an associate of I (as defined by (5.1)) which we write as follows:

$$
I=1+\sum_{j=h_{0}+1}^{v_{0}} s_{r, j}+\sum_{j=h_{1}+1}^{v_{1}} s_{r-1, j}+\cdots+\sum_{j=h_{r-1}+1}^{v_{r-1}} s_{1, j} .
$$

We recall that h_{k} by definition satisfies $1 \leqq h_{0}<h_{1}<\cdots<h_{r-1}$ and $h_{k} \leqq(n-3)-(r-(k+1)) 4=v_{k}$; also, that in determining the primary set associated with a given integer $g_{0}\left(1 \leqq g_{0} \leqq S_{r}\right)$ there is one and only one selection j_{i} possible at each step (cf. (1), (2), (3) of §4). Thus, if we can show that

$$
\begin{equation*}
\sum_{j=h_{0}+1}^{v_{0}} s_{r, j}<I \leqq \sum_{j=h_{0}}^{v_{0}} s_{r, j} \tag{5.3}
\end{equation*}
$$

then $j_{0}=h_{0}$. And, if we can show that if $j_{0}=h_{0}, j_{1}=h_{1}, \cdots, j_{i-1}$ $=h_{i-1}$ then

$$
\begin{equation*}
\sum_{j=h_{i}+1}^{v_{i}} s_{r-i, j}<q_{i}^{\prime} \leqq \sum_{j=h_{i}}^{v_{i}} s_{r-i, j} \tag{5.4}
\end{equation*}
$$

where

$$
\begin{equation*}
q_{i}^{\prime}=1+\sum_{j=h_{i}+1}^{v_{i}} s_{r-i, j}+\sum_{j=h_{i}+1+1}^{v_{i+1}} s_{r-(i+1), j}+\cdots+\sum_{j=h_{r-1}+1}^{v_{r-1}} s_{1, j}, \tag{5.5}
\end{equation*}
$$

then $j_{i}=h_{i}(i=1, \cdots, r-1)$.
The left inequalities of (5.3) and (5.4) are obvious. The right inequalities of (5.3) and (5.4) will be true if we can show that

$$
\begin{array}{r}
1+\sum_{j=h_{i}+1+1}^{v_{i+1}} s_{r-(i+1), j}+\sum_{j=h_{i}+2+1}^{v_{i+2}} s_{r-(i+2), j}+\cdots+\sum_{j=h_{r-1}+1}^{v_{r-1}} s_{1, j} \tag{5.6}\\
\leqq s_{r-i}, h_{i},
\end{array}
$$

for $i \geqq 0$ (and then add $\sum_{j-n_{i}+1}^{j} s_{r-i, j}$ to both sides).
Proof of (5.6). Case I. Suppose $s_{r-i, k_{i}+1} \neq 0$. Then

$$
\begin{aligned}
& \sum_{j=h_{i+1}+1}^{v_{i+1}} s_{r-(i+1), j} \leqq \sum_{j=h_{i}+2}^{v_{i+1}} s_{r-(i+1), j}=s_{r-i, h_{i}+1} \\
& \sum_{j=h_{i+2}+1}^{v_{i+2}} s_{r-(i+2), j} \leqq \sum_{j=h_{i}+3}^{v_{i+2}} s_{r-(i+2), j}=s_{r-(i+1), h_{i}+2} \\
& \cdot \cdot \cdot \cdot \cdots \cdot \cdots \cdot \cdots \cdot \cdots \cdot \cdots \cdot \cdots \\
& \sum_{j=h_{r-1}+1}^{v_{r-1}} s_{1, j} \leqq \sum_{j=h_{i}+(r-i)}^{v_{r-1}} s_{1, j}=s_{2, h_{i}+r-(i+1)}
\end{aligned}
$$

But by the lemma of §3,

$$
s_{r-i, h_{i}}=s_{r-i, h_{i}+1}+s_{r-(i+1), h_{i}+2}+\cdots+s_{2, h_{i}+r-(i+1)}+1
$$

Therefore (5.6) is true (in this case) for $i \geqq 0$.
Case II. Suppose $s_{r-i, h_{i}+1}=0$. Then, using the ideas appearing in the proof of Case I, the left side of (5.6) is less than or equal to

$$
\begin{aligned}
1+ & \left(\sum_{j=h_{i}+2}^{v_{i+1}} s_{r-(i+1), j}\right)+s_{r-(i+1), h_{i}+2}+s_{r-(i+2), h_{i}+3}+\cdots+s_{2, h_{i}+r-(i+1)} \\
& =\left(\sum_{j=h_{i}+2}^{v_{i+1}} s_{r-(i+1), j}\right)+s_{r-(i+1), h_{i}+1}=\sum_{j=h_{i}+1}^{v_{i+1}} s_{r-(i+1), j}=s_{r-i, h_{i}}
\end{aligned}
$$

for $i \geqq 0$.
6. The number of primary sets $\left(a_{1}, \cdots, a_{r}\right)$ (continued). In $\S 4$ we have associated with each integer $g_{0}\left(1 \leqq g_{0} \leqq S_{r}\right)$ a primary set $\left(j_{0}, j_{1}, \cdots, j_{r-1}\right)$. In $\S 5$ we have shown that each primary set $\left(h_{0}, h_{1}, \cdots, h_{r-1}\right)$ is the associate of an integer $I\left(1 \leqq I \leqq S_{r}\right)$. We show that this correspondence is 1-1 reciprocal:
(i) Each integer $g_{0}\left(1 \leqq g_{0} \leqq S_{r}\right)$ has one and only one associated primary set $\left(j_{0}, j_{1}, \cdots, j_{r-1}\right)$ because in selecting the j_{i} 's one and only one j_{i} can be selected at each step (cf. §4).
(ii) Integers g_{0} and $g_{1}\left(1 \leqq g_{0} \leqq S_{r}, 1 \leqq g_{1} \leqq S_{r}, g_{0} \neq g_{1}\right)$ cannot be associated with the same primary set $\left(j_{0}, j_{1}, \cdots, j_{r-1}\right)$. For in the contrary case g_{0} and g_{1} would each be equal to the right side of (4.11), and therefore to each other, which is impossible.

Thus there are S_{r} primary sets of order r. If r now varies over the range $1 \leqq r \leqq[n / 4]$, then there are as many primary sets of positive order as the sum of the terms of $\Delta_{m}(n)(m=[n / 4])$. Adjoining the primary set of order zero we have Theorem 1 as stated.
7. Proof of Theorem 2. Proof of (i). We recall that $\left(z_{1}, \cdots, z_{n}\right)$ is fixed. Let a primary set $\left(a_{1}, \cdots, a_{r}\right)$ (which may be of order zero) be given. Then with each $k(k \in\{1, \cdots, n\})(2.4)$ or (2.5) associates one and only one integer $p_{k}(=0$ or 1$)$ accordingly as k belongs to F (which may be null) or to N (cf. (2.3)). Thus with each primary set is associated one and only one n-tuple (p_{1}, \cdots, p_{n}). Applying H^{-1} to (p_{1}, \cdots, p_{n}) we obtain the unique lattice point associated with the primary set $\left(a_{1}, \cdots, a_{r}\right)$.

Proof of (ii). Let distinct primary sets

$$
\begin{equation*}
\left(a_{1}, \cdots, a_{r}\right) \quad \text { and } \quad\left(a_{1}^{\prime}, \cdots, a_{s}^{\prime}\right) \tag{7.1}
\end{equation*}
$$

be given ($r \geqq s$; ($a_{1}^{\prime}, \cdots, a_{s}^{\prime}$) may be the null set). Then (2.4) and (2.5) associate with (7.1)

$$
\begin{equation*}
\left(p_{1}, \cdots, p_{n}\right) \quad \text { and } \quad\left(p_{1}^{\prime}, \cdots, p_{n}^{\prime}\right) \tag{7.2}
\end{equation*}
$$

respectively. Since the primary set (7.1) are distinct, there must be an a_{i} such that $a_{i} \oplus\left\{a_{1}^{\prime}, \cdots, a_{s}^{\prime}\right\}$. The n-tuplets (7.2) will be distinct since $p_{a_{i}} \neq p_{a_{i}}^{\prime}$. Therefore the lattice points associated with the primary sets (7.1) will be distinct.

City College, New York

SUBGROUPS OF THE UNIMODULAR GROUP

IRVING REINER

Following the notation of [3], we let Γ denote the proper unimodular group consisting of all 2×2 matrices with rational integral elements and determinant +1 . For m a positive integer, define the principal congruence group $\Gamma(m)$ by

$$
\begin{equation*}
\Gamma(m)=\{X \in \Gamma: X \equiv I(\bmod m)\} \tag{1}
\end{equation*}
$$

where I denotes the identity matrix in Γ, and where congruence of matrices is interpreted as elementwise congruence.

For p a prime, we know from [2] that $\Gamma(p)$ is a free group with a finite set S of generators. If we define

$$
T_{m}=\left(\begin{array}{cc}
1 & m \tag{2}\\
0 & 1
\end{array}\right)
$$

then S may be chosen to include T_{p}. For each fixed integer s, we may define a group $\Omega(p, s)$ consisting of all power products of the generators in S for which the exponent sum for each generator is a multiple of s. In [3] it was shown that each $\Omega(p, s)$ is a normal subgroup of Γ of finite index in Γ. Furthermore, if $s>1$ and $(s, p)=1$, it was proved that $\Omega(p, s)$ does not contain any principal congruence group.

Let $\Delta(m)$ denote the normal subgroup of Γ which is generated by T_{m}. Obviously $\Delta(m) \subset \Gamma(m)$. Recently, Brenner [1] raised the following questions:
A. Does $\Delta(m)=\Gamma(m)$ for all m ?

[^1]
[^0]: ${ }^{2}$ We use the symbol $\}$ to denote "unordered set". The operations" " ", "-", "." between unordered sets are those in common usage in set theory.

[^1]: Received by the editors May 2, 1960.
 ${ }^{1}$ This research was supported by the Office of Naval Research.

