ON A QUADRATIC DIOPHANTINE INEQUALITY

FRED SUPNICK

1. Introduction. Let C be an *n*-cube and S the *n*-sphere circumscribed about C. Keeping C fixed let S be moved so that its center falls at some point P inside or on C. We pose the problem: How can vertices of C falling inside or on S_P (the subscript denotes the center) be selected?

Analytically expressed, let C be the unit *n*-cube the coordinates of whose vertices are zeros or ones (on a Cartesian coordinate system in E_n). Let P be the point (x_1, \dots, x_n) with $0 \le x_i \le 1$ $(i=1, \dots, n)$. S_P is of diameter $n^{1/2}$. We seek lattice points (y_1, \dots, y_n) $y_i = 0$ or 1 $(i=1, \dots, n)$ satisfying

(1.1)
$$\sum_{i=1}^{n} (x_i - y_i)^2 \leq n/4.$$

Thus, trivially, one point (y_1, \dots, y_n) may always be obtained if we let $y_i=0$ if $x_i \leq 1/2$ and $y_i=1$ if $x_i > 1/2$.

Of course, one obvious method would be to substitute (the coordinates of) the vertices of C into (1.1) and to select those which satisfy it; however, except for small n this is a prohibitive operation (even with mechanical aid). The problem therefore is one of *minimizing the number of operations* in obtaining solutions of the desired type.

In this paper we obtain a process for *immediately associating* with any $(x_1, \dots, x_n)(0 \le x_i \le 1, i=1, \dots, n, n \ge 4)$ a class of lattice points $(y_1, \dots, y_n) y_i = 0$ or $1 \ (i=1, \dots, n)$ satisfying (1.1).

We note that a lemma to a theorem of D. Warncke and the author¹ establishes the following class of solutions for the case n=4: Let $(x_{i_1}, \dots, x_{i_k})$ be a rearrangement G of (x_1, \dots, x_k) for which

$$|x_{i_1} - 1/2| \leq |x_{i_2} - 1/2| \leq |x_{i_3} - 1/2| \leq |x_{i_4} - 1/2|.$$

Let $y'_{i_1} = 0$ and $y''_{i_1} = 1$, and

$$y'_{i_j} = y''_{i_j} = \begin{matrix} 0 & \text{if } x_{i_j} \leq 1/2 \\ 1 & \text{if } x_{i_i} > 1/2 \end{matrix}$$

for j=2, 3, 4. Applying G^{-1} to $(y'_{i_1}, \dots, y'_{i_4})$ and $(y''_{i_1}, \dots, y''_{i_4})$ we obtain lattice points (y'_1, \dots, y'_4) and (y''_1, \dots, y'_4) respectively (with coordinates zeros or ones) satisfying (1.1).

Received by the editors September 2, 1959, and, in revised form, March 16, 1960.

¹ D. Warncke and F. Supnick, On the covering of E_n by spheres, Proc. Amer. Math. Soc. vol. 8 (1957) pp. 299-303, 1160. See §2.

2. Some definitions and statement of results. An ordered set of integers $(a_1, \dots, a_r)(1 \le a_1 < a_2 < \dots < a_r, 1 \le r \le [n/r], n \ge 4)$ will be called a *primary set of order* r if

(2.1)
$$a_i \leq (n-3) - 4(r-i)$$
 $(i = 1, \dots, r).$

Let (x_1, \dots, x_n) $(0 \le x_i \le 1, i=1, \dots, n; n \ge 4)$ be arbitrarily chosen (but held fixed in the following argument). Let $(x_{i_1}, \dots, x_{i_n})$ be a rearrangement H of (x_1, \dots, x_n) for which

(2.2)
$$\left|x_{i_1}-\frac{1}{2}\right| \leq \left|x_{i_2}-\frac{1}{2}\right| \leq \cdots \leq \left|x_{i_n}-\frac{1}{2}\right|.$$

Let z_1, \dots, z_n denote x_{i_1}, \dots, x_{i_n} respectively.

Now, each primary set (a_1, \dots, a_r) induces a partition²

$$\{1,\cdots,n\}=F+N$$

where

(2.3)
$$F = \{a_1, \dots, a_r\}, N = \{1, \dots, n\} - \{a_1, \dots, a_r\}.$$

Let k range over $\{1, \dots, n\}$:

(i) if $k \in F$, let

(2.4)
$$p_k = \frac{0 \quad \text{if } z_k > 1/2,}{1 \quad \text{if } z_k \leq 1/2;}$$

(ii) if $k \in N$, let

(2.5)
$$p_k = \frac{0 \quad \text{if } z_k \leq 1/2;}{1 \quad \text{if } z_k > 1/2.}$$

Now, because of (2.1), with each element a_i of F (cf. (2.3)) may be associated integers b_i , c_i , d_i of N (cf. (2.3)) such that $a_i < b_i < c_i < d_i$, holds for $(i=1, \dots, r)$, and such that (the intersection) $\{a_j, b_j, c_j, d_j\}$ $\cdot \{a_k, b_k, c_k, d_k\}$ is null for all pairs $j, k \in \{1, \dots, r\}$ $(j \neq k)$. Recalling the solutions for the case n=4 (at the end of §1) we have,

$$(z_{a_i} - p_{a_i})^2 + (z_{b_i} - p_{b_i})^2 + (z_{c_i} - p_{c_i})^2 + (z_{d_i} - p_{d_i})^2 \leq 1$$

for $(i=1, \dots, r)$. We note that $(z_i - p_i)^2 \leq 1/4$ for each element *i* of

$$\{1, \cdots, n\} - \sum_{i=1}^{r} \{a_i, b_i, c_i, d_i\}$$

² We use the symbol $\{ \}$ to denote "unordered set". The operations "+", "-", "·" between unordered sets are those in common usage in set theory.

FRED SUPNICK

[February

(if indeed there are such). Therefore $\sum_{k=1}^{n} (z_k - p_k)^2 \leq n/4$. Applying H^{-1} to (p_1, \dots, p_n) we obtain a lattice point $(y_1, \dots, y_n)(y_i = 0 \text{ or } 1)$ satisfying (1.1). We call (y_1, \dots, y_n) an (H)-lattice-point (since it depends on H) associated with the primary set (a_1, \dots, a_r) . The lattice point obtained by letting $y_i = 0$ if $x_i \leq 1/2$ and $y_i = 1$ if $x_i > 1/2$ $(i=1, \dots, n)$ will be referred to as the (H)-lattice-point associated with the null set (which we here call the "primary set of order zero" for convenience of exposition).

STATEMENT OF RESULTS. Let $A_{i,j}$ denote the element in the *i*th row and *j*th column of the double array:

(2.6)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	• • •
	0	0	0	0	4	5	6	7	8	9	10	11	12	13	14	15	16	•••
	0	0	0	0	0	0	0	0	22	30	39	49	60	72	85	99	114	• • •
	0	0	0	0	0	0	0	0	0	0	0	0	140	200	272	357	456	• • •
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	969	•••
	•																	

i.e., (i) if i=1, then $A_{i,j}=1$ for all positive integers j, (ii) if i>1, then $A_{i,j}=0$ for each positive integer $j \leq 4(i-1)$, and

(2.7)
$$A_{i,j} = \sum_{k=4(i-2)+1}^{j-1} A_{i-1,k}$$

for each positive integer j > 4(i-1).

First an algorithm is given (cf. §4) for listing all primary sets of order r $(1 \le r \le \lfloor n/4 \rfloor)$, and the following theorem concerning the "length" of a complete listing is established:

THEOREM 1. For a given $n \ge 4$, the total number of primary sets of orders 0, 1, \cdots , [n/4] is

$$\theta \equiv 1 + \sum_{j=1}^{n-3} \sum_{i=1}^{[n/4]} A_{i,j}.$$

THEOREM 2. (i) Each primary set (which may be the primary set of order zero) has one and only one associated (H)-lattice-point, and (ii) distinct primary sets have distinct associated (H)-lattice-points.

We thus have the following constructive process for obtaining vertices of C inside or on S_P :

STEP 1. Once $n \ge 4$ is specified, list all θ primary sets. This may be done by the algorithm of §4.

STEP 2. Once (x_1, \dots, x_n) is specified determine a rearrangement H

yielding (z_1, \dots, z_n) . Fixing attention on each primary set in turn, apply (2.4) and (2.5) to (z_1, \dots, z_n) , thus obtaining (p_1, \dots, p_n) ; we then apply H^{-1} to (p_1, \dots, p_n) and obtain an (H)-lattice-point satisfying (1.1).

REMARK. If (x_1, \dots, x_n) is such that $|x_i-1/2| \neq |x_j-1/2|$ for all pairs i, j $(i \neq j)$, then there is only one rearrangement H satisfying (2.2). If (x_1, \dots, x_n) is such that $|x_i-1/2| = |x_j-1/2|$ for some pair i, j $(i \neq j)$, let

$$(2.8) H_1: (x_{i_1}, \cdots, x_{i_n}), H_2: (x_{j_1}, \cdots, x_{j_n}), \cdots$$

be all the rearrangements of (x_1, \dots, x_n) such that

$$|x_{i_1} - 1/2| \leq \cdots \leq |x_{i_n} - 1/2|,$$

 $|x_{j_1} - 1/2| \leq \cdots \leq |x_{j_n} - 1/2|, \cdots.$

Let all θ (H_1)-lattice-points be obtained. To find those (H_2)-latticepoints which are not (H_1)-lattice-points, we need only consider primary sets (a_1, \dots, a_r) such that (j_{a_1}, \dots, j_{a_r}) \neq (i_{a_1}, \dots, i_{a_r}). Bearing this in mind at all times, we may obtain all other lattice points associated with each element of (2.8) without duplications.

3. A lemma. Let $\Delta_r(n)(1 \le r \le \lfloor n/4 \rfloor)$ denote the matrix in the upper left-hand corner of (2.6) consisting of all elements $A_{i,j}$ $(i=1, \dots, r;$ $j=1, \dots, n-3)$. It will be convenient to introduce a new designation for an arbitrary element of $\Delta_r(n)$, say $s_{i,k}$, where *i* indicates the *i*th row from the top (as before), but *k* now indicates the *k*th column from the right; (thus $A_{i,j} = s_{i,k}$ where k = n-2-j $(j=1, \dots, n-3)$).

LEMMA. Let $s_{i,k}$ (i > 1) be any nonzero element of $\Delta_m(n)$ $(m = \lfloor n/4 \rfloor)$ such that $s_{i,k+1}$ is not zero. Then

$$(3.1) s_{i,k} = s_{i,k+1} + s_{i-1,k+2} + s_{i-2,k+3} + \cdots + 1.$$

PROOF. From (2.7) it follows that $s_{i,k} = s_{i,k+1} + s_{i-1,k+1}$. Since $s_{i-1,k+1} = s_{i-1,k+2} + s_{i-2,k+2}$, we obtain

$$(3.2) s_{i,k} = s_{i,k+1} + s_{i-1,k+2} + s_{i-2,k+2}.$$

Repeating this argument on the last term of (3.2), etc., we finally obtain (3.1).

4. An algorithm. Let S_r denote the sum of the elements of the *r*th row of $\Delta_r(n)(1 \le r \le \lfloor n/4 \rfloor, n \ge 4)$. Let q_0 be an integer satisfying $1 \le q_0 \le S_r$. We shall associate with q_0 a primary set $(j_0, j_1, \cdots, j_{r-1})$ as follows:

(1) Determination of j_0 . We notice that

FRED SUPNICK

$$(4.1) \qquad S_r = s_{r,v_0} + s_{r,v_0-1} + \cdots + s_{r,2} + s_{r,1}$$

where $v_0 = (n-3) - (r-1)4$; there are (r-1)4 zeros to the left of s_{r,v_0} in the last row of $\Delta_r(n)$. Then from (4.1) we see that there is one and only one integer j_0 satisfying $1 \le j_0 \le (n-3) - (r-1)4$ such that

(4.2)
$$\sum_{j=j_0+1}^{v_0} s_{r,j} < q_0 \leq \sum_{j=j_0}^{v_0} s_{r,j}$$

(here and below, expressions of the form $\sum_{j=A}^{B} U_j$ where B < A are to be taken as zero).

(2) Determination of j_1 . We notice that

$$(4.3) s_{r,j_0} = s_{r-1,v_1} + s_{r-1,v_{1-1}} + \cdots + s_{r-1,j_{0+1}}$$

where $v_1 = (n-3) - (r-2)4$; there are (r-2)4 zeros to the left of s_{r-1,v_1} in the (r-1)st row of $\Delta_r(n)$. Let

(4.4)
$$q_1 = q_0 - \sum_{j=j_0+1}^{v_0} s_{r,j};$$

then $1 \leq q_1 \leq s_{r,j_0}$. From (4.3) we see that there is one and only one integer j_1 satisfying $j_0 < j_1 \leq (n-3) - (r-2)4$ such that

(4.5)
$$\sum_{j=j_1+1}^{v_1} s_{r-1,j} < q_1 \leq \sum_{j=j_1}^{v_1} s_{r-1,j}.$$

(3) Let us suppose that integers j_0, j_1, \dots, j_{i-1} have been determined, each j_g ($g \in \{1, 2, \dots, i-1\}$) being the only integer which satisfies

$$j_{g-1} < j_g \leq (n-3) - (r - (g+1))4 \equiv v_g$$

and

(4.6)
$$\sum_{j=j_{g}+1}^{v_{g}} s_{r-g,j} < q_{g} \leq \sum_{j=j_{g}}^{v_{g}} s_{r-g,j},$$

where

$$q_{g} = q_{g-1} - \sum_{j=j_{g-1}+1}^{v_{g-1}} s_{r-(g-1),j}$$

i.e.,

$$q_{g} = q_{0} - \bigg(\sum_{j=j_{g+1}}^{v_{0}} s_{r,j} + \sum_{j=j_{1}+1}^{v_{1}} s_{r-1,j} + \cdots + \sum_{j=j_{g-1}+1}^{v_{g-1}} s_{r-(g-1),j}\bigg).$$

168

We show how to determine j_i . We notice that (if $r - (i-1) \ge 2$)

$$(4.7) \quad s_{r-(i-1),j_{i-1}} = s_{r-i,v_i} + s_{r-i,(v_i-1)} + \cdots + s_{r-i,(j_{i-1}+1)}$$

where $v_i = v_0 + 4i$; there are (r - (i+1))4 zeros to the left of s_{r-i,v_i} in the (r-i)th row of $\Delta_r(n)$. Let

(4.8)
$$q_i = q_{i-1} - \sum_{j=j_{i-1}+1}^{v_{i-1}} s_{r-(i-1),j}.$$

Then, letting g=i-1 in (4.6), and subtracting the left sum, we obtain $1 \le q_i \le s_{r-(i-1),j_{i-1}}$. From (4.7) we see that there is one and only one integer j_i satisfying

$$(4.9) j_{i-1} < j_i \le (n-3) - (r - (i+1))4 \equiv v_i$$

such that

(4.10)
$$\sum_{j=j_i+1}^{v_i} s_{r-i,j} < q_i \leq \sum_{j=j_i}^{v_i} s_{r-i,j}.$$

Repeatedly selecting the j_i as described in (3) (immediately above), we finally obtain the primary set (j_0, \dots, j_{r-1}) which we associate with q_0 .

From the manner in which (j_0, \dots, j_{r-1}) was selected we may now show that

(4.11)
$$q_0 = 1 + \sum_{k=0}^{r-1} \sum_{j=j_{k+1}}^{v_k} s_{r-k,j}.$$

PROOF OF (4.11). Let

(4.12)
$$\beta_k = \sum_{j=j_k+1}^{v_k} s_{r-k,j}.$$

Then from (4.8) $q_0 = q_1 + \beta_0, q_1 = q_2 + \beta_1, \cdots$; therefore

(4.13)
$$q_0 = q_{r-1} + \beta_{r-2} + \beta_{r-3} + \cdots + \beta_0.$$

But from (4.10), since $s_{1,j}=1$

$$q_{r-1} = \sum_{j=j_{r-1}}^{v_{r-1}} s_{1,j} = 1 + \beta_{r-1},$$

and (4.13) becomes

(4.14)
$$q_0 = 1 + \sum_{k=0}^{r-1} \beta_k.$$

Substituting (4.12) into (4.14) we obtain (4.11).

1961]

FRED SUPNICK

5. The number of primary sets (a_1, \dots, a_r) . With any integer g_0 $(1 \leq g_0 \leq S_r)$ we have associated a primary set $(j_0, j_1, \dots, j_{r-1})$ determined as in §4.

We now show that any primary set $(h_0, h_1, \dots, h_{r-1})$ is an associate of an integer I satisfying $1 \leq I \leq S_r$.

(A) Let

(5.1)
$$I \equiv 1 + \sum_{k=0}^{r-1} \sum_{j=h_k+1}^{v_k} s_{r-k,j}.$$

It is clear that $I \ge 1$. We first prove that

$$(5.2) I \leq S_r.$$

PROOF OF (5.2). (i) Suppose there are at least two nonzero terms in the last row of $\Delta_r(n)$. Then

$$1 + \sum_{k=0}^{r-1} \sum_{j=h_k+1}^{v_k} s_{r-k,j} \leq 1 + \sum_{k=0}^{r-1} \sum_{j=k+2}^{v_k} s_{r-k,j}$$
$$= 1 + \sum_{k=1}^{r-1} \sum_{j=k+2}^{v_k} s_{r-k,j} + \sum_{j=2}^{v_0} s_{r,j}$$
$$= 1 + \sum_{k=1}^{r-1} s_{r-(k-1),k+1} + \sum_{j=2}^{v_0} s_{r,j}$$
$$= s_{r,1} + \sum_{j=2}^{v_0} s_{r,j} = S_r.$$

(ii) Suppose there is only one nonzero term in the last row of $\Delta_r(n)$. Then

$$1 + \sum_{k=0}^{r-1} \sum_{j=h_k+1}^{v_k} s_{r-k,j} \leq 1 + \sum_{k=0}^{r-1} \sum_{j=k+2}^{v_k} s_{r-k,j}$$

= $1 + \sum_{k=1}^{r-1} \sum_{j=k+2}^{v_k} s_{r-k,j}$
= $1 + \sum_{k=2}^{r-1} \sum_{j=k+2}^{v_k} s_{r-k,j} + \sum_{j=3}^{v_l} s_{r-1,j}$
= $1 + \sum_{k=2}^{r-1} s_{r-(k-1),k+1} + \sum_{j=3}^{v_1} s_{r-1,j}$
= $s_{r-1,2} + \sum_{j=3}^{v_1} s_{r-1,j}$
= $s_{r,1} \equiv S_r$.

[February

(B) We now show that the primary set $(h_0, h_1, \dots, h_{r-1})$ is an associate of I (as defined by (5.1)) which we write as follows:

$$I = 1 + \sum_{j=h_0+1}^{v_0} s_{r,j} + \sum_{j=h_1+1}^{v_1} s_{r-1,j} + \cdots + \sum_{j=h_{r-1}+1}^{v_{r-1}} s_{1,j}.$$

We recall that h_k by definition satisfies $1 \le h_0 < h_1 < \cdots < h_{r-1}$ and $h_k \le (n-3) - (r - (k+1))4 = v_k$; also, that in determining the primary set associated with a given integer g_0 $(1 \le g_0 \le S_r)$ there is one and only one selection j_i possible at each step (cf. (1), (2), (3) of §4). Thus, if we can show that

(5.3)
$$\sum_{j=h_0+1}^{v_0} s_{r,j} < I \leq \sum_{j=h_0}^{v_0} s_{r,j}$$

then $j_0 = h_0$. And, if we can show that if $j_0 = h_0$, $j_1 = h_1$, \cdots , $j_{i-1} = h_{i-1}$ then

(5.4)
$$\sum_{j=h_i+1}^{v_i} s_{r-i,j} < q'_i \leq \sum_{j=h_i}^{v_i} s_{r-i,j}$$

where

(5.5)
$$q'_i = 1 + \sum_{j=h_i+1}^{v_i} s_{r-i,j} + \sum_{j=h_i+1+1}^{v_{i+1}} s_{r-(i+1),j} + \cdots + \sum_{j=h_{r-1}+1}^{v_{r-1}} s_{1,j},$$

then $j_i = h_i$ $(i = 1, \dots, r-1)$.

The left inequalities of (5.3) and (5.4) are obvious. The right inequalities of (5.3) and (5.4) will be true if we can show that

(5.6)
$$1 + \sum_{j=h_{i+1}+1}^{v_{i+1}} s_{r-(i+1),j} + \sum_{j=h_{i+2}+1}^{v_{i+2}} s_{r-(i+2),j} + \cdots + \sum_{j=h_{r-1}+1}^{v_{r-1}} s_{1,j} \leq s_{r-i,h_i},$$

for $i \ge 0$ (and then add $\sum_{j=h_i+1}^{i} s_{r-i,j}$ to both sides). PROOF OF (5.6). CASE I. Suppose $s_{r-i,h_i+1} \ne 0$. Then

1961]

But by the lemma of §3,

$$s_{r-i,h_i} = s_{r-i,h_i+1} + s_{r-(i+1),h_i+2} + \cdots + s_{2,h_i+r-(i+1)} + 1.$$

Therefore (5.6) is true (in this case) for $i \ge 0$.

CASE II. Suppose $s_{r-i,h_i+1}=0$. Then, using the ideas appearing in the proof of Case I, the left side of (5.6) is less than or equal to

$$1 + \left(\sum_{j=h_i+2}^{v_{i+1}} s_{r-(i+1),j}\right) + s_{r-(i+1),h_i+2} + s_{r-(i+2),h_i+3} + \cdots + s_{2,h_i+r-(i+1)}$$
$$= \left(\sum_{j=h_i+2}^{v_{i+1}} s_{r-(i+1),j}\right) + s_{r-(i+1),h_i+1} = \sum_{j=h_i+1}^{v_{i+1}} s_{r-(i+1),j} = s_{r-i,h_i}$$

for $i \ge 0$.

6. The number of primary sets (a_1, \dots, a_r) (continued). In §4 we have associated with each integer g_0 $(1 \le g_0 \le S_r)$ a primary set $(j_0, j_1, \dots, j_{r-1})$. In §5 we have shown that each primary set $(h_0, h_1, \dots, h_{r-1})$ is the associate of an integer I $(1 \le I \le S_r)$. We show that this correspondence is 1-1 reciprocal:

(i) Each integer $g_0(1 \le g_0 \le S_r)$ has one and only one associated primary set $(j_0, j_1, \dots, j_{r-1})$ because in selecting the j_i 's one and only one j_i can be selected at each step (cf. §4).

(ii) Integers g_0 and $g_1(1 \le g_0 \le S_r, 1 \le g_1 \le S_r, g_0 \ne g_1)$ cannot be associated with the same primary set $(j_0, j_1, \dots, j_{r-1})$. For in the contrary case g_0 and g_1 would each be equal to the right side of (4.11), and therefore to each other, which is impossible.

Thus there are S_r primary sets of order r. If r now varies over the range $1 \le r \le \lfloor n/4 \rfloor$, then there are as many primary sets of positive order as the sum of the terms of $\Delta_m(n)$ $(m = \lfloor n/4 \rfloor)$. Adjoining the primary set of order zero we have Theorem 1 as stated.

7. **Proof of Theorem** 2. *Proof of* (i). We recall that (z_1, \dots, z_n) is fixed. Let a primary set (a_1, \dots, a_r) (which may be of order zero) be given. Then with each k ($k \in \{1, \dots, n\}$) (2.4) or (2.5) associates one and only one integer $p_k(=0 \text{ or } 1)$ accordingly as k belongs to F (which may be null) or to N (cf. (2.3)). Thus with each primary set is associated one and only one *n*-tuple (p_1, \dots, p_n) . Applying H^{-1} to (p_1, \dots, p_n) we obtain the unique lattice point associated with the primary set (a_1, \dots, a_r) .

PROOF OF (ii). Let distinct primary sets

$$(7.1) (a_1, \cdots, a_r) \text{ and } (a'_1, \cdots, a'_s)$$

172

be given $(r \ge s; (a'_1, \dots, a'_s))$ may be the null set). Then (2.4) and (2.5) associate with (7.1)

(7.2)
$$(p_1, \dots, p_n)$$
 and (p'_1, \dots, p'_n)

respectively. Since the primary set (7.1) are distinct, there must be an a_i such that $a_i \in \{a'_1, \dots, a'_s\}$. The *n*-tuplets (7.2) will be distinct since $p_{a_i} \neq p'_{a_i}$. Therefore the lattice points associated with the primary sets (7.1) will be distinct.

CITY COLLEGE, NEW YORK

SUBGROUPS OF THE UNIMODULAR GROUP¹

IRVING REINER

Following the notation of [3], we let Γ denote the proper unimodular group consisting of all 2×2 matrices with rational integral elements and determinant +1. For *m* a positive integer, define the *principal congruence group* $\Gamma(m)$ by

(1)
$$\Gamma(m) = \{ X \in \Gamma \colon X \equiv I \pmod{m} \},\$$

where I denotes the identity matrix in Γ , and where congruence of matrices is interpreted as elementwise congruence.

For p a prime, we know from [2] that $\Gamma(p)$ is a free group with a finite set S of generators. If we define

(2)
$$T_m = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix},$$

then S may be chosen to include T_p . For each fixed integer s, we may define a group $\Omega(p, s)$ consisting of all power products of the generators in S for which the exponent sum for each generator is a multiple of s. In [3] it was shown that each $\Omega(p, s)$ is a normal subgroup of Γ of finite index in Γ . Furthermore, if s > 1 and (s, p) = 1, it was proved that $\Omega(p, s)$ does not contain any principal congruence group.

Let $\Delta(m)$ denote the normal subgroup of Γ which is generated by T_m . Obviously $\Delta(m) \subset \Gamma(m)$. Recently, Brenner [1] raised the following questions:

A. Does $\Delta(m) = \Gamma(m)$ for all m?

Received by the editors May 2, 1960.

¹ This research was supported by the Office of Naval Research.