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1. Introduction. In previous papers [2; 3], topological degree the-

ory was used to establish the existence of periodic solutions of systems

of ordinary differential equations with a nonlinear perturbation term.

In [2; 3], methods for computing the appropriate topological degree

were developed and in [3], it was shown that for 2-dimensional,

totally degenerate systems, the absolute value of the topological

degree, call it | d\, is a lower bound for the number of distinct periodic

solutions in the following sense: if the perturbation term in the sys-

tem of differential equations contains a term which is a function of the

independent variable only (such a term is often called a forcing term)

then if this term is varied arbitrarily slightly, the number of distinct

periodic solutions is greater than or equal to \d\.

In this note, we extend and sharpen this result. First we show that

the result holds for systems of arbitrary dimension and with arbitrary

degree of degeneracy. Secondly, we show that these periodic solutions

form families continuous in the perturbation parameter.

As in [3], we start from the treatment of perturbed systems given

by Coddington and Levinson [l, pp. 356 ff. ]. This note is independent

of [2 ; 3 ] and may be regarded as an extension of the theory developed

in [1, pp. 356 ff.].

2. Families of solutions. We consider the «-dimensional system,

(E) x = Ax + ßf(x, t, /i),

where A is a constant matrix, ß is a parameter, and / has period 2tt

in variable /. We study the degenerate case, i.e., the case in which the

linear part of (E)  [the equation x = Ax] has q nonzero solutions of

period 2ir where lúqún. We assume that/ has continuous second

derivatives in all values of x, t, ß. Let x(t, ß, c) be the general solution

of (E) such that x(0, ß, c)=c. Because of the uniqueness condition

in the general existence theorem, the condition that x(t, ß, c) have

period 27T is:
X(27T, p, c) — c = 0,

or using the variation of constants formula,
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(1) /, 2x ew*->)Af[x(s, ß, c), s, n]ds = 0,
0

where E is the identity matrix. (Equation (1) is Equation (3.20) on

p. 360 in Coddington and Levinson [l ].) Thus the problem of finding

periodic solutions of (E) is that of solving the system (1) of w equa-

tions for the w unknowns, C\, • ■ • , cn, the components of c.

Following [l ] we make the following assumption.

Assumption 1. Matrix A has the canonical form:

Ui

Ak

Ei

B„

C

where the elements not shown are zeros. Each A,, j=\,

is a matrix of a¡ (a, even) rows and columns of the form

, k,

A4-

¡Ss

E2 Sj

E2 Sj)

where all the elements are zero except Sj and £2, and

S' = C "oO-   *"C °)'
where N¡ is a positive integer. (A matrix A¡ may have only two rows

and two columns in which case A¡ = S¡.) Each matrix B¡ has ßj rows

and columns, 7=1, • • • , m, and is of the form

Br-

10 0 •

1 0 •

0 1 0

0

where B¡ may have only one row and column in which case B¡ con-

sists of the single element 0. The matrix Chas (w— 23*=i a¡— /a« ßi)
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rows and columns and has no characteristic roots of the form iN for

any integer N including N — Q. Matrix C need not be in canonical form.

If (ci, ■ ■ ■ , Ci, • ■ • , cn) is an «-vector, the indices i corresponding

to the last two rows of any A¡ or to the last row of any B¡ are called

exceptional indices. They are indices with the following form:

i = «i + «2 + • • • + (ay — 1),

i = ai + a2 + • • • + a¡,

where j—í, ■ ■ ■ , k, and

i = ai+ . . . + ak + ß1+ . . . + ß.

where j — 1, • • • , m. The indices i corresponding to the first two rows

of any A¡ or to the first row of any B, are called singular indices.

They are indices with the following form :

i = 1, 2, ai + 1, a2 + 2, ■ ■ • , «i + a2 + • • • + ak-i + 1,

«i + a2 + • • • + ak-i + 2, ai + • • • + ak + 1,

ai+ • ■ ■ +ak + ßi+l, ■ ■ ■ ,ai+ ■ ■ ■ +ak + ßi+ ■ ■ •

+ ßm-i + 1.

There are (2k-\-m) exceptional indices and (2k-\-m) singular indices.

The number q = 2k+m is the degree of degeneracy of the problem.

Throughout this paper, we assume that g>0, i.e., that there is at

least one A¡ or one B¡ in the canonical form of matrix A.

As described in [l ], if the Ci, • ■ ■ , cn are relabelled c{, ■ ■ • , cl so

that the first (n — q)ci's are the components of (ci, • ■ • , c„) with

nonexceptional indices and the last qc[ 's are the components with

exceptional indices and if j, j' denote singular and nonsingular in-

dices, then equation (1) may be replaced with:

(2)

N(c{ ,■■■ , cn'_a) + ß ( f   e^-^f[x(s, p, c), s, p]ds)      = 0,

ae^-^Af[x(s, p, c), s, ß]ds)      = 0,
o / U)

where A7 is a nonsingular (n — q)X(n — q) matrix acting on vector

(ci*, • ■ • , Cn-,) and (foTel2T~')Af[x(s, ß, c)s, ß]ds)j> denotes the vector

composed of the (n — q) components of fQ2l!e<-2''~'')Af[x(s, ß, c), s, ß]ds

which have nonsingular indices. Similarly

(J   e«^Af[x(s,p,c),s,p]dsj
U)
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denotes the vector composed of the q components which have singular

indices.

The left side of (2) defines a continuous mapping (call it 9TC,,) of real

Euclidean w-space into itself. Let c" denote the vector c in which the

(n — q) components with nonexceptional indices have been set equal

to zero. (The nonzero components of c" are cn'_a+i, • • • , cl.) Then

ae»T-.Uf[e.Ac»t S) 0]ds)

defines a continuous mapping of real (/-space into itself which we

call M.

Lemma 1. If (c°_a+1, • ■ ■ , c°n) is a solution of

(3) M(c„'_a+i, • ■ • ,c4) = 0

at which the Jacobian of M (denote it by J(M)) is ?¿0[ = 0], then

(0, • • • , 0, ejJ-i+K ■ ■ ■ , c„) is a solution of

(4) 9Eo(ci, • • • ,$,') = 0

at which /(Mo) ^0 [ = 0]. Conversely any solution of (4) has the form

(0, ■ • • , 0, cjj_4+1, • • • , c°n) where (cn-1+1, ■ ■ • , c°„) is a solution of (3),

and if J(M0)^0 [ = 0] at (0, ■ ■ ■ , 0, c°_a+1, ■ ■ ■ , c°„), then J(M)

^0 [-0][oí (cJU+i, • • • ,c°n).

Proof. Follows from inspection of systems (3) and (4).

Lemma 2. Let § be a sphere in n-space with center at the origin and

radius r, and let S be a sphere in q-space with center at the origin and

radius r. If the topological degree of M at O (the origin in q-space) and

relative to S exists, then if ¡j. is sufficiently small, the topological degree

of Sflfyi at O (the origin of the n-space) and relative to S exists and equals

the topological degree of M.

Proof. Follows from the definition of topological degree and the

fact that the topological degree is invariant under homotopy.

Now we make the following assumption:

Assumption 2. Let /i(x, t, n), ■ • ■ , fn(x, t, ¡x) denote the com-

ponents of f(x, t, u). We assume that if j is a singular index, then

fi(x, t, p) = gj(x, t, ft) + hj(t)

where h¡(t) is a function of / only with a continuous second derivative

and hj(t) has period 2ir in t.

Now let h(t) be the vector whose jth component is 0 if j is non-

singular and whose jth component is hj(t) if j is singular. Similarly
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define the vector g(t). If Assumption 2 is satisfied, then system (4)

has the form:

N(c{, ■ ■ • ,c„'_8) = 0,

(5) (   f    e^-')Ag[e'Ac, s, 0]dsj     « - (  f    e^~''>Ah(s)dsj    ,
\ J o / U) \•/ o / O)

where/ denotes a singular index. We want to write the constant terms

on the right in (5) in detail. First, these terms may be written:

- (  Í     esAh( — s)ds J
0)

From the definition of singular index, the terms may then be written:

/l 2x
[cos(Nis)hi( — s) — sin(Nis)h2( — s)]ds = bi

0

/. 2t [sin(2Vis)*iC— *) + cos(Nis)h2( — s)]ds = b2
o

/. 2t [^s( — í)]¿J = bq.
0

The form of the last equation in system (6) implies that there is a

B¡ in the canonical form of matrix A. If there is no Bj in the canonical

form, then all the equations in system (6) look like the first two equa-

tions in the system.

Now the point b = (fii, ■ ■ ■ , bq) is a point in g-space.

Lemma 3. Given «o>0, an arbitrary positive number, then there exists

a neighborhood N of b in q-space such that if pÇLN, then there exist

hi\t), • ■ • , h(^\t), all of period 2ir in t and such that

max   | hj(t) - h¡  (t) \   < e0,       (j = 1, • • • , q),

and such that if hj(t) is replaced by hf\t) in the integrals in (6),

j=l, • • • , q, the resulting values b^\ • • • , b^ are the coordinates of

point p.

Proof. This follows from inspection of the integrals in (6). For

example, we may take:

(1) o,
hi  (I) = hi(t) + — cos (Nil),

IT
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(i)                         b
h2  (t) = h2(t) -\-sin (Nit),

IT

where a, b are arbitrary small constants.

Definition. Given €o>0, then functions h\(t), • • • , hq(t) are said

to be varied less than eo if they are replaced by functions hi\t), ■ • • ,

hnl\t), all of period 2ir in t, and all having continuous second deriva-

tives, and such that

max   | hj(t) — h¡   (t) \   < e0.
0áíS2ir

Now we need a lemma about topological degree which was shown

in a previous paper [4] to be an easy consequence of a theorem due to

Sard [5].

Lemma 4. Let J be a continuous map defined on the closure R of a

region RER" and differentiable in R. Suppose that the topological degree

of J at point po is d¿¿0. Then there is a neighborhood U of po and a set

E of n-dimensional measure zero, EEU, such that pEU — E implies

that J~x(p) is a finite set consisting of at least \d\ points.

Proof. See [4, Lemma 3.2].

In the two lemmas and the theorem which follow, Lemma 4 will

be applied. Functions h\(t), ■ ■ ■ , hq(t) will be varied less than eo and

in such a way as to avoid a set of zero measure of the kind referred

to in Lemma 4. For brevity, we shall refer to this kind of variation of

h\(t), • • • , hq(t) simply as varying h\(t), • ■ • , hq(t) less than eo.

Lemma 5. If the topological degree at O of M relative to sphere S is

d?¿0, then if hi(t), ■ • ■ , hq(t) are varied less than eo, an arbitrary posi-

tive number, then the system

(3) M(cl.q+1, ■ • ■ ,cn') = 0

has exactly m solutions inside sphere S, where m^\d\ and J(M)9é0 at

each solution in S of (3).

Proof. Follows directly from Lemmas 3 and 4.

Lemma 6. If the topological degree of M at 0 and relative to S is dy^O,

and if e0 is an arbitrary positive number, then there exists ;ui>0 such

that if hi(t), • • • , hq(t) are varied less than e0, then for |ju| </n, the

system

3H„(ci, • • • , c„' ) = 0

has m distinct solutions

{fit (m), ■ ■ • , Cn (p)), (i = 1, • • • , m).
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Each solution is a continuous function of p for \ß\ <pi. Also

(ci\f)> " • ' i cÍ?(m)) is i>n the interior of S for i= 1, ■ ■ • , m and for

\ß\ <ßi. The solutions are distinct in the following sense: if \ß2\ <ßi,

\ß3\ <ßi and if iiT^ii, then

Cj ' (p2) 7a cj 2 (ps), (j = 1, • • • , n).

Proof. From Lemmas 1 and 5, it follows that

(7) 3rc0(ci', • ■ • ,c¿) = 0

has m solutions at which J(M0) 9e 0. Also (7) has no other solutions by

Lemma 1. The conclusion of the lemma then follows from Lemma 2

because the topological degree is the sum of the signs of the Jacobians.

(Each solution (c[ (p), • • ■ , c„(ß)) is a continuous function of ß by

the implicit function theorem.)

Theorem. If the topological degree of M at O and relative to S is

dj¿0 and if eo is an arbitrary positive number, then there exists /xi>0

such that if hi(t), ■ ■ ■ , hq(t) are varied less than eo, equation (E) has

i»(è | d\) distinct periodic solutions xt(t, ß, c) (i = 1, • • • ,m) where c is

in the interior of S, solution Xi(t, ß, c) depends continuously on ß for

\ß\ <ßi and

lim Xi(t, p, c) = e'Ac(i)
„->o

where (c*) = (<f(0), • • • , c®(0)) for i=l, ■ ■ ■ ,m.

Proof. Follows from the derivation of (1), and Lemma 6, and the

general existence theorem for solutions of (E).

Remark. Note that the theorem gives no information about the

existence or nonexistence of periodic solutions x(t, ß, c) such that c

is outside S. If the radius of 5 is changed, then, in general, the value

of pi (see Lemma 6) is changed.

Remark. If (E) is totally degenerate, i.e., if n = q, the proof of

the theorem goes through in the same way except that Lemma 1

can be omitted and Lemma 2 is simpler.

Remark. If the topological degree of M at 0 and relative to S is

zero, then the same kind of arguments as have been used here may

be applied to show that if equation (3) has solutions in S, and if

h(t), ■ ■ ■ , hq(t) are varied less than eo, then (E) has a finite set of

families x¿(/, ß, c) of periodic solutions as described in our theorem.

But equation (3) may have no solutions in 5. If the topological degree

is zero, it is generally necessary to employ finer methods to obtain

existence theorems (see [3]).
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QUOTIENT GROUPS OF REDUCED ABELIAN GROUPS

ELBERT A. WALKER

Let G be a reduced torsion p-group. (In this paper, group will mean

Abelian group.) Let B be a basic subgroup of G. It is well known that

| E | Moè | G|, where | S\ denotes the cardinal of the set S. Fuchs gives

a proof of this in [l, p. 102], and attributes it to Kulikov. This has

turned out to be a very useful fact, and the purpose of this short

note is to generalize it. Now, as is generally known, every torsion group

G has a basic subgroup B ; that is, a pure subgroup E that is a direct

sum of cyclic groups, and such that G/B is divisible. To obtain such

a B, simply take Bp to be a basic subgroup of the p-component of

G, and let E= ^p @BP. It is easy to see that in this more general

situation |E|t*°^|G| still holds, and in fact follows from the cor-

responding statement for p-groups. The generalization we will prove

is the following

Theorem. Let G be a reduced torsion group, and let H be a subgroup

of G such that G/H is divisible. Then 177| No^ | G\.

Proof. Our proof uses some homological results of Harrison in [2].

Notice that we may assume that \H\ <\G\, that G is infinite, and

hence that | G/H\ = ¡ G\. Let Q and Z denote the additive group of

rationals and integers, respectively. From the exact sequence

0 -> 77 -» G -» G/77 -» 0,

we get the exact sequence
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