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fined on the real line X is an example of a function which is locally an

e-mapping in the narrow sense, but which is not a polynomial map-

ping. In this case we have f(X)?*X.

Remark 2. From Theorem 3 it follows that if F satisfies the as-

sumptions of Theorem 3, then there exists a point x such that F(x) =x

(i.e., F: X-+X has a fixed point).
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A CHAINABLE CONTINUUM NO TWO OF WHOSE
NONDEGENERATE SUBCONTINUA ARE

HOMEOMORPHIC

JAMES J. ANDREWS

R. D. Anderson and Gustave Choquet [l] gave an example of a

plane continuum no two of whose nondegenerate subcontinua are

homeomorphic. The object of this note is to point out that there is a

chainable continuum having this property. The only change we make

in the construction given in [l ] is to replace the w-ods used by R. D.

Anderson and Gustave Choquet by chainable continua C„_2.

A subcontinuum F of a continuum X is a separating continuum of

X if X— Fis not connected and C\(X— Y) =X. A subcontinuum F of

a continuum X is a strong separating continuum if:

(1) F is a separating continuum of X,

(2) X— Y has two components, Xi and X2,

(3) there are points yi, y2G Y such that yi(¡.Cl(Xi).

Let V= {(x, y)/y= \x\ and —1 <x<l}. Let C» be formed from n

copies of V and w + 1 "lines" so that each F is a strong separating

continuum of C„ as in Figure 1 (for n = 2).
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Figure 1

Following [l ] we construct a continuum X using C„ in place of the

(w-|-2)-ods used in [l ]. As in [l ], if A and B are subcontinua of X we

may assume A —B is not empty and hence A—B contains a separat-

ing continuum Y of A. Now F contains k strong separating continua.

No subcontinuum of B has this property. Hence A and B are not

homeomorphic.

In order to show that X is chainable we first note that each Mi is

chainable.

By Lemma 2 of [l] we have the following: For each number e>0

there is an integer i such that D(f^1(p)) <e, for pÇzMt and /i the

map induced by/¿: M¡+i—*Mj of X onto Mi. This implies that there

is a ô>0 such that if U is open in M{ and D(U) <8, then D(fr\U))

<e.

One need only assume the contrary. Then for each 5 > 0 there is a

U(ô) such that D(U(5))<S and D(fr\U(8)))>e. Let p be a limit
point of a set P of points p/G U(l/j). If £/ is an open set containing

p then LO U(í/j) for some j and hence D(f¡'1(p)) > e. But this contra-

dicts our choice of Mi. In order to «-chain X we need only 5-chain Mi.
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