
SYMMETRIC MEANS AND MATRIX INEQUALITIES

PETER BULLEN AND MARVIN MARCUS1

1. Introduction. The purpose of this note is to present several new

inequalities for elementary symmetric functions and exploit these to

investigate the inequalities that exist among the eigenvalues of sub-

matrices and sums of positive definite hermitian (p.d.h.) matrices.

We describe our notation : (a) = (au ■ ■ • , a„) will denote an »-tuple

of positive numbers, (a/) is the (n— l)-tuple obtained by deleting a<

from (a). Er(a) denotes the rth elementary symmetric function of

the (a) :

Er(a) = Z ft «v,        E° = 1-

pr(a) is the mean of Er(a),

pr = pr(a) = (J)   Er(a).

If (a) = (öi, • • • ,an)then(â) = (oi, • • • ,an,an+i) andpr(ah ■ ■ ■ ,an+i)

= pT. If two sets (a) and (b) are related by ai — \bi, X>0, i= 1, • • • , n

then we say (a) is proportional to (b). We note that if A is an «-square

complex matrix with eigenvalues cti, • • • , an then ( —l)r£r(a) is

the coefficient of x"~r in the characteristic polynomial det(x7 — A).

2. Results.

Theorem 1. 7/l^r = /fe=« then

(1) pr/pTk = pkr+1/pTk+u

with equality if and only if ai= • ■ • =a„+i-

We give two proofs.

Proof 1. The following results are known [2, p. 52]

n + 1 — s s
(2) p. =-—— p. -\-—- an+ip.-u

n+1 «+1

(3) if s<t then pY'^p1/1 with equality if and only if at= • • • =o„,

(4) if ú!i= • • • =a„ = athen
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n + 1 — s s
p. = ——-—*— a* H-— oB+ia,_1.

m + 1 n + 1

If r = £ then (1) is implied by (3) so we assume r<k. Using (2) with

both s = p and s = £ + l (1) is seen to be equivalent to

In - k k + 1 ) T k
L  =    <-— (Pk+l/pk) + On+l-—— >   pr

I» + 1 n + 1 )

Cn + 1 - r r \ k+1
^<-r-T-pr-1-r-Z<ln+lPr-l\ =R.

(   » + l «+1 ;

By (3)

(5)

in — k   nk k + Í\T k
L S <—— pk   + an+i ■■——> pr,

\n+ 1 »+ 1;

ín+í-r r M/r) *+1
^^i-—— Pr + —-an+lPr \ .

l.M+1 »+1 ;

By (4) with a = p\,r the right-hand side of (5) is the mean of the rth

elementary symmetric function of the numbers oi = a2= • • • =aa

= p\,T and on+i. Hence by (3) with t = r and 5 = ^ + 1 R is not less than

In — k    (*+i)/r      k + I   k/r      \r        k in — k   i/r      k + 1        1 r

Kn+ Í M+l ) Kn+ l n+ 1        ;

^ L.

This proves the inequality. The inequality is strict in (3) and hence

in our arguments unless Oi= • • • =an = pl=an+i, completing the

proof.

Proof. 2. In this argument we show that the right-hand side of

(1) is a convex function of a„+i with at most one critical value in

a„+i>0.

Let x = o„+i and set

<i>(x) = Pr   /pl+i.

Since <p(x) is of the form (x+a)*+1/(x+o)r to within a positive con-

stant multiple and k>r (k = r is again an application of (3)) we can

check that (b"(x) > 0 for x = 0 and hence <p(x) is convex. Thus it suffices

to show that

(6) *(0) à pi/pi

and
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k      r

(7) <b(xo) è pr/pk    when   <p'(x0) =0,       x0 > 0.

Now

(w+l-r)^1        k+l

*(0) = >   M;_i  /-ît ^ /^*+x
(n + l)*+1-r(w - k)r

and by (3) we need only check that

(8) (n + 1 - r)*+1 > (n - k)r(n + l)*+1-r

whenever l^r = ¿ = ». If k = n (8) is clear, otherwise let K = k + 1,

N=n-\-l and (8) becomes

(9)
/ r\K/        Ky r       K
(1-—)   >(l- —),        <-< — < 1.
\        N /        \        N J N      N

Taking natural logarithms of both sides and expanding, (9) is im-

mediately implied by r<K. We next see that 0'(xo)=O and xo^O

implies

(n + 1 — r)prpk — (n — k)pk+ipr-i
Xo =-'—'-■ >

(k + 1 - r)pkpr-i

and hence

<t>(Xo)   =   (pkr/prk)(prr-l/pr~1)

r O + l)(n + 1 - r) - r(n - k)(pr-1/pr)(pk+l/pk)lk+1-r

1 (n+l)(k+l-r) J

By (3) it suffices to show that the quantity in the square brackets is

greater than 1. This is equivalent to

(10) Pr-lpk+l = Prpk

which is established by an easy induction on k — r from the case

k = r [2, p. 52]. Now, the only time that equality can hold in (3) and

(10) is for a\= ■ ■ ■ =an = a. But then we check that x0 = a also. The

proof is complete.

Corollary. If 2I„ and G» are the arithmetic and geometric means

of (a) then

(11) (Sln/Gn)«  ^   (gln+l/Gn+l)^1

with equality if and only if a\= • • • =an+i.

This result is an analogue of an inequality due to R. Rado [2,

p. 61]:
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(12) M(2Tn - Gn)   á (» +  l)(2In+l ~ Gn+l).

The inequality (12) can be derived in the same way as (11) was from

(3) with s = n and t= 1.

Theorem 2. Lei H be a p.d.h. (w + 1)-square matrix and let K be an

n-square principal submatrix of H. If pi^ ■ ■ ■ gtpn+i>0 andXis^ • ■ •

=A„>0 are the eigenvalues of H and K respectively then

(#î(Xi, • • • , K)/pk(M, • • ■ , A»))
(13) *+i

=   (Pi     U*l> "  '  • , A«n+l)/#*+lO*l,  *  *  •  , ^n+l)).

Proof. Let AT be obtained from H by deleting row and column i

of ii. Let xi, • • • , xn be an orthonormal (o.n.) set of ra-dimensional

eigenvectors of K. Let y¡, j= 1, • • • , w, be the set of (w + 1)-vectors

given by

y i = (Xyi, ■ • ■ , Xii—i, U, Xji, • • • , x,n),

where xy=(xyi, • • • , %n-i, xíf, • • • , xy„) and let yn+i be the (ra + 1)-

vector with 1 in position i, zero elsewhere. Then we check easily that

Vu - " " » Vn+i is an o.n. set of (w + l)-vectors and moreover

Then

(p\(\i, • ■ • , K)/pk(Xi, • • • , A»)) =

(Hyi, y}) = (Kxj, x,), 7 = 1,

( E (£**> *i)/»J
¿»((■fiTxi, Xl), • • • , (Kxn, xn))

(n+l \t+l

H (Hyi, yMn + 1))

g--Ü-
/»*+i((£ryi,yi), • • • , (Fy„+i, y„+i))

*+i
á  (#1     0*1, •   •  • , Pn+l)/pk+l(pi,  •   •  • , Pn+l)) ■

The inequalities above follow from :

(i) the sum of the quadratic forms over a complete o.n. set is the

trace; (ii) pk+i((Hyi, yî), • ■ • , (Hyn+i, yn+i)) ^£*+iOn> ' • • , Mn+i) for

any o.n. set yi, • • • , yn+i [4J.

Corollary. If rk and dk be the trace and determinant of Hk, the It-

square principal submatrix of H whose elements lie in the first k rows

and columns of H, then
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(rk/k)k ^  (rk+1/(k + !))*+'

dk dk+i

It might be conjectured that Theorem 2 follows from the Cauchy

inequalities [l, p. 75]. However a proof via this route is made diffi-

cult by the fact that pr/pl is not an increasing function.

In [5] it was proved that £r/£r_i and E//T are both concave func-

tions for positive variables. We extend these results as follows.

Theorem 3. If 1 úpúr^n and FTiP=(Er/Er^pyip then

(14) Fr,p(a + b)^ Fr,p(a) + Fr,p(b)

with equality if and only if r=\, p = i or (a) is proportional to (b).

Moreover, Fr,p is a nondect-easing function of each a,.

Proof.

Fr.v(a + b) = ( f[ Fr-y+i(a + b)/Er^(a + b)\  '

^   | fl  (Er-j+M/Er-M)   +  (£r_J+,(73)/Fr_y(ô))|

^ | f[ Fr-y+iW/Fr-Xa) j   ' + j ft E^m(b)/E^b)]

= Fr,p(a) + Fr,p(b).

The first inequality above is the result in [5 ] and inequality can hold

if and only if (a) is proportional to (b). The second inequality is the

Holder inequality. Conversely if (a) is proportional to (b) the equal-

ity is easily checked.

We next compute

— \ET(a)/Er-p(a))

= \Er-p(a)ET^(a{) - Er(a)Er-^a'))/ET-P(a).

Now by (2) the numerator in this last expression becomes

Er-1(a{)Er-p(a{) - ET(al)ET^x(a{) 2: 0.

This last inequality is found in [2, p. 52].

We apply Theorem 3 to obtain

Theorem 4. If A and B are n-square p.d.h. matrices with eigenvalues

0<«i^ • ■ • ^«„, 0</3i^ • • • ^ßn respectively and C = A+B has

eigenvalues 0 < Si ̂  • • • g 5„, then for 1 á í I f á i á «,

i/p
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(15) Fr,p(hi, • • • , M = Fr,p(ai, ■ ■ ■ ,ak) + Fr,p(ßi, • • • , ßk) ■

Proof. By Theorem 3 and the fact that Fr,p is homogeneous of

degree 1 we conclude that Fr,p is concave for positive variables. By

a general extremal result in [3] it follows that if Xi, • • • , x& are an

o.n. set of vectors then

(16) Fr,p((Axi, xi), • • • , (Axp, Xp)) = Fr^(ah, ■ • ■ , ait)

for some index set 1 ^¿i< • • ■ <ik¿n. But since Fr,P is nondecreas-

ing we know that

(17) Fr,P(<Xi!,      ■   ■ , «.*)   ^  Fr,p(ai,  •  •   • , ak).

Now select xi, ■ • • , x* to be an o.n. set of eigenvectors of C cor-

responding to 5i, • • • , 8k respectively. Then

Fr.p(hl, • ■ ■ ,hk) = Fr,p((Cxi, Xi), • • • , (Cxk, xk))

= Fr,p((Axi, Xi) + (Bxi, xi), • • • , (^4x*, Xk) + (Bxk, xk))

= Fr,p((Axi, Xi), • • • , (Axk, xk)) + Fr,p((Bxi, xi), • • • , (Bxk, xk))

= Fr,p(ai, ■  ■  ■ ,ak)+ Fr,p(ßl,  ■  ■  ■ ,ßk)

in which we have used Theorem 3 and (16) and (17) in succession.

Corollary. If xn+ E*-i ( — i)'Ci(A)xn~' is the characteristic poly-

nomial of A then

(Cr(C)/Cr-p(C)yip = (Cr(A)/cr-p(A)yip + (cr(B) / cr-P(B)yip.

Proof. Take k = n in Theorem 4.

References

1. H. L. Hamburger and M. E. Grimshaw, Linear transformations in n-dimensional

vector space, Cambridge, University Press, 1951.

2. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities (2nd ed.), Cambridge
University Press, 1952.

3. M. Marcus, Convex functions of quadratic forms, Duke Math. J. vol. 24 (1957)

pp. 321-326.
4. M. Marcus and J. L. McGregor, Extremal properties of Hermitian matrices,

Canad. J. Math. vol. 8 (1956) pp. 524-531.
5. M. Marcus and L. Lopes, Inequalities for symmetric functions and Hermitian

matrices, Canad. J. Math. vol. 9 (1957) pp. 305-312.

The University of British Columbia, Vancouver, Canada


