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1. Introduction. Consider the linear system of differential equations

(1.1) J2 A'(x) ̂  + B{x)u = f(x)
;=i dXi

where u and / are w-vector-valued functions, A1 and B are mX«

matrix-valued functions, and x = (xi, X2, ■ ■ ■ , x„) varies over all

points of the real Euclidean «-space En which have non-negative co-

ordinates.

The system (1.1) is called positive-symmetric hyperbolic if the

matrices Ai are symmetric and positive-definite. Such systems are in-

cluded in the general class of symmetric hyperbolic systems intro-

duced by Friedrichs [l]. Symmetric systems are of particular interest

because they possess an energy inequality; that is, the square integral

of the solution over a space-like hyperplane can be estimated in terms

of square integrals of initial values of the solution and the nonhomo-

geneous term in the differential equation.

We shall not consider the Cauchy problem for (1.1), but rather, we

prescribe the initial values on the coordinate hyperplanes x< = 0, i.e.,

(1.2) m(xi, • • •, x¿_i, 0, Xi+i, • ■ ■ , xn) = g¿(xi, • • •, Xi-i, xi+i, • • ■ , xn)

for i=l, 2, • ■ • , m. That the initial value problem (1.1), (1.2) also

possesses an energy inequality was proved by Wendroff [3]. The

proof is similar to the one for the Cauchy problem given by Fried-

richs.

Moreover, Wendroff demonstrated that a finite-difference analogue

of (1.1), (1.2), having centered difference quotients, also satisfies an

energy type inequality; the square integral of certain averages of the

solution of the difference equation are estimated in terms of square

integrals of averages of the initial data and /. Under the assumption

that a genuine solution of (1.1), (1.2) exists, he proved, for w>2,

that the finite-difference equation has a unique solution approximat-
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ing, with arbitrary accuracy, the solution of (1.1), (1.2). The error

is measured in terms of the norm induced by the energy estimate.

When » = 2 he was able to obtain pointwise estimates for the error.

In this paper, we shall construct the solution of (1.1), (1.2) by

employing a finite-difference analogue of it which utilizes backward

difference quotients. This backward difference analogue of (1.1), (1-2)

also possesses an energy inequality from which we prove an approxi-

mation theorem similar to that in [3], but in our case the error is

measured in the metric of L2.

Existence and uniqueness will not be presupposed in this paper,

but will be established as a consequence of the energy inequality for

the backward difference equation. Existence and uniqueness will be

proved under the assumption that the data for (1.1), (1.2) have a

sufficient number of bounded derivatives. As a corollary of the exist-

ence theorem we prove that the finite-difference approximations to

the solution of (1.1), (1.2) converge uniformly on compact sets.

In [3], the initial value problem was also investigated for the semi-

linear equation

" du
(1.3) £ A<(x) — = F(x, u).

.-1 dxi

Our results and methods, with slight modifications, apply to (1,3),

and this will be briefly indicated. In addition, certain questions con-

cerning (1.3) which have no counterpart in the linear case will also

be discussed.

2. Preliminaries. LetÇ= {x££n|x,>0, i = i, 2, • • • , »}, and let

Q be the closure of Q. Set

Q(x) - {y € JS»| 0 £ yt á Xi, i - 1, 2, - • •,«}

and

Q(x I i\ a) = {y G E" | 0 ^ y¡ ^ x¡ for i 9e j and y i = a] .

Note that the sets Q(x\i\ 0) and Q(x\ i\ x<) make up the boundary of

<2(x).
We denote by (u, v) the Euclidean scalar product of the two m-

vectors u and v, and we let | u\ = [(u, w)]1/2 be the associated norm.

For a matrix B we define \B\ to be the operator norm

I BI  = sup -^i—p •
u *o   I u I

Let h be an arbitrarily chosen positive number, the mesh size. The
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points of Q whose coordinates are all non-negative integral multiples

of h are called mesh points,3 and the set of all mesh points will be de-

noted by Qh. Put Qh = Qt^Qh.
We define the translation operators E,- and £,• as follows:

•EiM(Xl, •  • • , Xn) = V(xl • •  • , Xi; + h, • •  • , xn),

Ei[v](xU ■ ■ • , Xn) = V(XU • • • , Xi — h, • ■ ■ , xn).

In terms of these basic operators we define the forward and backward

difference quotients as follows:

vZi = h^{Ei[v]-v},

■on = h-i{v - Ei[v]} = Ei[vXi].

Difference quotients of higher order are formed in the obvious way.

Let

Qh(x) = all mesh points in Q(x),

and

0 "ill
Qh(x) = all mesh points in Q(x) — U Q(x \ i \ 0).

We turn now to a finite-difference problem similar to the problem

(1.1), (1.2). We seek a function v on the mesh Qh which satisfies the

backward difference equation

(2.1) jl Ai{x)vii +B{x)v =/(x)
i-i

in Qh and takes on the initial values

(2.2) v = g<

onö»(oo|»|o),*=l, 2, • • • , n.

We conclude this section with a sufficient condition for the finite-

difference problem to have a unique solution.

Let yGO». Since the matrices A'(x) are positive-definite, there

exist positive scalars a'(y) such that

(2.3) (A\x)S, & è o*(y) | f I»

for xGÇ*(v), where £ is a real wi-vector. Set

|B|„=   sup   |B|.
«eûk(i/).

* We could just as well have taken unequal mesh sizes along the different coordi-

nate axes, but in the interests of simplicity we have elected to use a common mesh size.
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Theorem 1. Let y G Ça- If the mesh size h satisfies the condition

(2.4) h\B\y < ¿a'(y),
i-i

then there exists a unique solution of the initialvalue problem (2.1), (2.2)

in Qh(y).

Proof. We first construct the solution at the point (h, h, ■ ■ ■ , h).

Once this is done, we can proceed, using the same construction, from

point to point, until Qhiy) is exhausted.

Consider (2.1) at the point (h, h, • • ■ , h); it can be written in the

form

[B + ¿ A(h-l)v = h-1 ¿ A(Ei[v] +/.
\        ¿-i / »-i

Since the terms Ei[v] are known, our problem now is to show that

the matrix C = B+h~1^2"miAi is nonsingular. If £ is any real m-

vector, then we have, in view of (2.3),

(2.5) (Gfc k) ̂  [â-1 ¿ a*(y) - | B |„] | £ |\

Because of (2.4) and (2.5), (C£, £)>0 for |£| ^0, and this implies

that C is nonsingular. It is obvious that the solution is unique.

In the case of the semi-linear equation, the situation is slightly more

complicated. But if we assume that F(x, u) satisfies a Lipschitz condi-

tion of the form

(2.6) | F(x, u) - F(x, v) |   g K(y) \u-v\, xE Qn(y),

then Theorem 1 holds for the semi-linear equation, provided that we

add the condition

(2.7) hK(y) <J2a<(y) -  \ B\yh

on the mesh size h.

We sketch a proof of this fact. To find v at the point (h, h, • • ■ ,h),

we set up the following iteration procedure:

n

CV*+n = X) A'h^Ëiiv] + F(î>«>).

Because of Theorem 1, the iteration scheme is well defined. It follows

from (2.5) that
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|c-'|„á h(Èo'(y) -h\B
\ t-1

and hence

| v(k+» _ vm | g | c-1 \y | F(o<*>) - F(»(*-") I.

Taking into account (2.6) and (2.7), we find that

I „(*+i) _ „(*) I   g pi |W — 0(*-D I

where 0<p<l. Thus the sequence {vik)} converges to a limit, say v,

and v clearly satisfies

n

Cv = Y, Aifi-iEilv] + F(v).
<=i

Again the solution is unique.

3. The energy inequality. Let xGQ* and set

IMI<a<*> =An   Z)   I »(y)| ,
yeon(x)

IMIq°<.> = *"   Ç   I »(y) I*,

IMUouk) = Ä"     ZI »(y) I •
K€Ot(»|í|a)

Theorem 2. Leí x£Qa a«á Zeí A1 be of class C1 [Q(x) ]. 7/ o ¿s a so/m-

¿iow of the finite-difference problem (2.1), (2.2), /Aew there exist constants

ho>0 and C(ho)>0, depending only on A% Axv B, « and x, such that

(3.1) Ê Nlâ'cNI-l) ¿ C(Ä.) £ IhHowiio) + C(Áo)||/||qO(i)
1=1 1=1

/or a// A ̂  Ao.

Proof. Using the symmetry of the matrices A ', we have

i m k k

(3.2) (», A\it) = (/d, DiJ = X) C^'*) »*«
*=i

where wk denotes, in general, the &th component of the wi-vector w.

It is readily verified that

m . m .

(3.3) £ [(¿V»]* - (A vit) + £ (il •)&[»J.
h-1 *=l

For the moment, let \bk'} denote the elements of Ai. Then

■
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(3.4) (A »)*.. = ( £ bk,v)     = £ bÏMv'] + £ bh'vti.
\ «=.1 / ii «-1 «-1

If we combine (3.2), (3.3) and (3.4), we obtain

(3.5) (v, A vXi) = (v, A v)Xi — (£,•[»], A vXi) — £,■(», AXiv).

Now if we add the term (v, AHtt) to both sides of (3.5), and rearrange

the result slightly, we obtain the basic identity

(3.6) 2(v, A'vXi) = (v, A\)Xi + h(vXi, A »«,) — E¿(i>, AXiv).

Since the .4* are positive-definite,

(3.7) (vXi,A%,)^0.

Taking the scalar product of equation (2.1) with 2hnv, summing the

result over the mesh points of Ql(x) rnd utilizing (3.6) and (3.7), we

get

£ h» 23 (*, AH)* ¿ £ A"   E  &(*, ¿««0

+ 2h»   23   {(».Ä»+ (*,/)}.

Since

2(*,/) ̂  M2+ l/l2,

and

a" 23 (», ¿*»)*« = a"-1   23   (», ̂ '») - a"-1   13  (°, ah)
«»(*) 0»Wíl«<) Ondulo)

it follows from (3.8) that

n n

(3.9)      23 IM|qc*i.ï»<) ^ Ci 23 IMIowiio) + Ci||n||««(,) + ||/||o°(*),

where C\ is a constant, depending only on the quantities that C(ho)

is allowed to depend on.

Now (3.9) implies that
n

IMI«<xi«ix,-> ^ Ci 23 ll»ll«x(i<io) +11/11 «°<x)
(3.10)

k

+ d£\h"->   23   \v\*]h,
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where kth = Xi. It can be shown that (cf. Lees [2, p. 170]) (3.10) has

as a consequence4

(3.11) IMS««*, Í 2/ClI<[d £ ||S||Q(x„,0) + ||/||20.(I)]

Finally, if we sum (3.11) with respect to the index i, we get the desired

inequality (3.1).

The energy inequality we have just established has an important

practical application as an immediate consequence; the solution of

the finite-difference problem (2.1), (2.2) is stable under small changes

in the data. This is also true of the semi-linear problem.

An equally important consequence of the energy inequality is the

following approximation theorem.

Theorem 3. If u(x) is a smooth solution of the initial value problem

(1.1), (1.2) in Q(x"), x°ÇE.Qh, and vh(x) is the solution of the finite-

difference problem (2.1), (2.2) then

"     I, ||2

(3.12) Ex*(u) =    max    ¿^ II« — B*||o(vi¿i»i>
veo* (i°)   «-i

approaches zero as h—>0. If, in addition, m£C2((?(x0)), then Exo(u)

= 0(Ä2).

Proof. Apply the energy inequality to the difference u—vn (cf.

[3]).
Theorem 3 also holds for the semi-linear problem. However an im-

portant practical advantage can be obtained if we approximate (1.3)

by

(3.13) Ê ¿<(*K ■= F(x, l,[v]).
i-i

This simple device avoids the necessity of employing a time consum-

ing iterative procedure for solving the system

Ê A*(x)vti = F(x, v)
i=l

since the system (3.13) is actually linear. And, what is more impor-

tant, this device leaves the stability and convergence properties un-

affected; Theorem 3 holds verbatim for (3.13).

* It is at this point that the mesh size must be restricted; the inequality holds if

CiAgl/2.
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4. Additional estimates. In this section we derive a priori estimates

for the higher order difference quotients of the solution of (2.1), (2.2).

Such estimates are needed for the existence theorem given in the next

section.

In the remainder of this paper we assume, for simplicity, that 73 =0

in (2.1); no generality is gained by keeping this term.

Theorem 4. Let xGQ* and let the functions A\ gi and f be of class

C1. If v is a solution of (2.1), (2.2), then there exist positive constants h0

and M, not depending on h, such that

(4.1) £\K&w£M
i=l

for h^ho.

Here M depends, of course, on A\ g%/, their first derivatives, n

and x.

Proof. We introduce the functions w' = vXi. If we difference equa-

tion (2.1) with respect to xj, we get

(4.2) 23 EiUK,. + 23 A^Eilw] = /,,.
1=1 1=1

Also

w  — gXj on   Qa(c° I i\ 0)        for i 9e j,
(4.3)

Env  = - (A)     23 A gik on <2*(oo | i | 0).
kfái

The energy inequality can be applied to the system (4.2), (4.3), and

we get the inequality

n . n

23 Ik ll«(*m*i) è c 23 Ik ||«<*i«io> + c||/xj|g°(x)
(4.4) "

+ c23 Hallow-
3-1

Let z= 23?-1 M2- Then (4.4) implies that

23 Il2ll<3(xi»ix<) is c 23 Ilzllo(xi»io) + c 23 ll/xJIoVx)
i=i t=i j=i

(4-5) urllll2
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Since the first two terms on the right hand side of (4.5) are bounded,

independent of h, we conclude, as in the proof of Theorem 3, that

ii n2
||z||qu) ^ M,

which is the desired result.

Repeating this argument, we obtain the

Theorem 5. Let xGQh and lei the functions A*, gi and f be of class C\

If v is a solution of (2.1), (2.2), then there exist positive constants ha and

M,, independent of h, such that

(4.6) IMqcx) ^ Mk;       (Oáiáí);       h ^ h0,

where Dkv denotes any kth order forward difference quotient of v.

5. Existence and uniqueness.

Theorem 6. If the functions A\ gl and f are of class Cn+2, then there

exists a unique solution of (1.1), (1.2) which is of class C1.

Proof. Let e = (l, 1, • • ■ , 1). We shall construct the solution in

Q(e). Consider the sequence of meshes \Qk} where hk — 2~k,

(k = 0, 1, • • • ). The set

D = Ü Qk(e)
*=o

is everywhere dense in Q(e). Let vk denote the solution of the finite-

difference problem (2.1), (2.2) over Qk.

We extend the function vk to all of Q(e) by linear interpolation.

The extended function, which we still denote by vk, is continuous on

Q(e).
We have

H-2-*

Vk(Xl,   ■   ■   ■   , Xn)   =   Vk(0, X2,   ■   ■   ■   , Xn)   +  2~k     £    •»k.xjiy, X2,   •   ■   •   , Xn).

y=0

Hence, by Schwarz' inequality

|  Vh(Xi,   ■   ■   •   . Xn) |2

1

g 2 | vk(0, xt, • ■ ■ , xn) |2 + 2-k+1 £ I Vk,xi(y, x2, • • • ,xn) |2.
ï=0

If we apply the same reasoning to %,Xl, except that now we operate

with the second variable x2, we get
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I Vk{Xl,   •   •   •  , Xn) |2 i

g  2 I Vh(0, *I, •  •   • , Xn) |2 + 22"* 23   I Vk,*x(y, 0,  •  •   • , Xn) |2
y=0

1

+ 22-* 23 I "*.xix,(y, »» *», ■• • •, *») I2-
1/.«—0

Continuing in this way, we find that |i/*| can be estimated in terms

of bounds for the initial data, their derivatives up to the order n —1

and the constant Mn of Theorem 5.

Since linear interpolation does not increase the maximum of i/*, it

follows that its linear extension is uniformly bounded on Q{e). Sim-

ilarly the linear extensions of the forward difference quotients of »*,

up to the order two, are likewise uniformly bounded on Q(e). There-

fore, since linear interpolation does not increase the Lipschitz con-

stant of »*, the sequences {»*} and {»*,*<} are uniformly bounded and

equicontinuous. By Ascoli's theorem, there is a subsequence of the

sequence {vk} which converges uniformly on Q(e) to a continuous

function u{x). It is easy to show that a subsequence of {flt.ij} con-

verges uniformly on Q(e) to a continuous function w<(x), and that

Wi(x)=du/dxi. Clearly we can arrange things so that the same sub-

sequence of the sequences {p*}, {i»*^} converge uniformly.

It is immediate that m is a solution of (1.1), (1.2) at each point of

the dense set D. By continuity, u satisfies (1.1), (1.2) everywhere in

Q(e). This proves the existence part of the theorem.

The uniqueness part of the theorem follows from the energy in-

equality in [3].

Remarks. (1) Since the sequence {vh} has the property that every

subsequence has a further subsequence converging uniformly to a

unique, continuous limit function, the original sequence must also

converge uniformly to this limit function. Thus, Vk converges uni-

formly to u on Q(e).

(2) This theorem also holds for the semi-linear equation, provided

that F(x, u) is smooth enough.
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