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There has been a recent renewal of interest in the oscillatory be-

havior of solutions of linear self-adjoint differential equations of the

fourth order. Leighton and Nehari [S] reopened the study with a new

characterization of conjugate points for equations of the type

(1) (r(x)y")" - p{x)y - 0,

where r(x) >0 and p(x) are both continuous on [a, oo) and p(x) does

not change sign, and related conjugate point properties to oscillation.

They gave extensive evidence indicating that the oscillatory behavior

when p(x) is positive is essentially different from that when p(x) is

negative. Relatively little is known in general when p(x) changes sign

or when derivative terms of order less than four are present—except

those facts which can be obtained by a simple piecing together of

intervals or by the relatively few transformations into the type (1).

Earlier study of this subject was done by W. M. Whyburn [8] and

others listed in the bibliography of [5].

This paper is primarily concerned with the fourth-order equation

(1) where r(x) and p(x) are both positive and continuous on [a, oo)3

and the designation "(1)" will denote the equation (1), together with

these restrictions on the coefficients except in one or two cases in

which departure from this convention will be explicitly given. For

example, in §3 there is a theorem insuring the disconjugacy of (1)

without regard of the sign, or changes of sign, of p(x).

Leighton and Nehari [5] introduced the double-zero conjugate

point concept of which the first conjugate point r]i(a) of a is defined as

follows and is called the first LN'-conjugate point:

Definition 1. The number 171(a) is the smallest number ¿>G(a, <*>)

for which the two point boundary conditions4

(2) y(a) = y'(a) = y(b) = y'(b) = 0

are satisfied by a nontrivial solution of (1).
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In [2], the author introduced a companion number jui(a) which cor-

responds to the focal point conditions for second-order equations.

Definition 2. The number Mi(a) is the smallest number b(E_(a, <x>)

for which

(3) y(a) = y'(a) = y,{b) = y[ (b) = 0

is satisfied nontrivially by (1). (The notation yi(x) =r(x)y"(x) will be

used throughout this paper.)

If »71(a) does not exist then no solution of (1) has more than three

zeros on [a, «>) [5] and equation (1) is said to be LN-disconjugate

[2]. The reader is referred to the above-mentioned references for the

relation of these numbers to the oscillatory behavior of solutions of

(1).
In this paper, the fourth-order equation (1) is expressed in an obvi-

ous way as a system of two second order equations in the vector-

matrix form.6

(4) «»-,(,)« = <>,       « = (>),       A-Q    l/o')

and conjugate points are defined to be the well-known ones for sys-

tems (4) and are called systems-conjugate points of (1):

Definition 3. The number fji(a) is the smallest i»G(a, °o) for

which

(5) y(a) = yi(a) = y(b) = yi(b) = 0

is satisfied nontrivially by (1).

Definition 4. The number jûi(a) is similarly determined by

(6) y(d) = yi(a) -/(»)- y/(*)-0.

For any of these numbers it is easy to show that if one such number b

exists then there is a smallest on (a, °°). If iji(a) does not exist then

equation (1) is said to be systems-disconjugate on [a, °°). It will be

seen in §4 that the existence of 771(a) implies that of 771(a), so that

systems-disconjugacy is a subclass of ZAf-disconjugacy. Examples

are given to show the converse is not true. If infinitely many systems-

conjugate points {¿(„(a)} exist it will be seen that equation (1) is

oscillatory, but the existence of <n(o) for each o£ [a, =0) does not

imply oscillation—thus departing again from the properties of the

LN-conjugate points.

An oscillation theorem and a disconjugacy theorem for equation

(1), with pr—i, are established which depend on the oscillation of a

6 Another second-order systems representation is utilized in [7].
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second order equation. This disconjugacy theorem is then applied to

give a disconjugacy theorem for the more general equation (1).

Extensive use will be made of the sequence { U, V, u, v} of funda-

mental solutions of (1) determined by the identity matrix Wronskian

at x = a :

y(a)    y'{a)   yi(a)   y{ (a)

y = U:     i   1 0 0 0

y = V: 0 1 0 0
(7)

y = u: 0 0 1 0

y = v:       {   0 0 0 1

1. Relations between systems-conjugacy and focal conditions. It

was seen in [2] that the existence of yi(a) implies that of pi(a) but

the converse is true only under additional conditions (e.g.,/°°l/r= oo),

as is the case for second-order real equations [l]. However, the sys-

tems concepts are more closely related.

Theorem 1.1. The first systems conjugate point fji(a) exists if, and

only if, the number fii(a) exists. Furthermore, a<ßi(a) <f¡i(a).

Proof. Note that in (a) and fli(a) are the first zeros on (a, oo) of

b' and f, respectively, where

(8) & = W - vV, ß = Vm' - viV{, t - V'vi - v'Vi{=Vv{ - vV'i).

The following identities will be helpful (see [2 ] for similar ones) :

(9) ff - - pr&',        (r&'Y = 2t,        f " = — - p&,
r

as well as the initial values:

»(a) = *'(a) = (r&')'(a) = 0,        (rà')"(a) = 2, f(a) = 0,

(10)
j8(a) = p'(a) - (p'/p)'(a)= 0,   (ß'/p)"(a) = - 2,    f'(a) = 1.

Case 1. Suppose ??i(a) exists. Then p(rji) =0=p'(a) and by Rolle's

Theorem there is a zero of f(x), and hence one of f'(x), on (a, fji).

Therefore, jui(ö) exists and one part of the theorem is proved.

Case 2. Suppose fii(a) exists and f?i(o) does not exist. Then ô-'>0

and, hence, ¿>0 on (a, «>). Also, p'<0 and /5<0 on (a, oo). Since

(f/V)'=—&Vi/V2<0 then f(x) has at most one zero on (a, oo).

The facts that f (x) is a solution of the second order differential equa-

tion
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/     ¥     V 1        (V{      pV\
(11) ( ) +-(— + —)r = 0

and that f'(fa) =0 yield [2] that f(x) has a zero x = /i and that x = j&i

is the only zero of t'(x) on (a, <*>).

As in [2], consider the positive quotients on (a, 00):

Ac = V/v,    \, = V'/v',    X2 = Vi/Vi,    X3 - VIM.

Analysis of their monotone properties and differences (as in [2])

yields that there exists a positive constant X* such that on (h, co) the

solution y(x) = V(x) — \*v(x) satisfies y>0, y'<0 and y"<0, which

is contradictory. Therefore, the existence of fii(a) yields the existence

of 771(a), without further restrictions on the coefficient of (1).

Similar analysis establishes that <r'>0 on (a, 00) if, and only if,

t'>0 on (a, °°), where a = uv' —vu' and t = u'vi—v'u\ (see §4). Also,

Lemma 1.1. // f)i(a) does not exist (i.e., equation (1) is systems-

disconjugate) then there is a positive number X such that on (a, co ) the

solution y= V—\v satisfies y>0, y'>0, yi<0 and y[ <0.

Suppose that fji(a) does not exist but that there is a number

bÇz(a, 00) such that 771(0) exists. By definition, there is a nontrivial

solution z(x) such that z(b) =z\(b) =z'(c)=z{ (c) =0, c = pn(a) (exists

by Theorem 1.1). If z'(b) >0 then z( (b) <0 and it is easily determined

that z(c)>0 and zi(c) <0. Using the solution y(x) of Lemma 1.1 and

recalling that [5]

S[y; z] = yzl — zy{ — y'zx + z'y\ = constant,

a contradiction in signs at x = b and x = c is achieved.

Lemma 1.2. If f\i(a) does not exist then f¡i(b) does not exist for

bG(a, 00).

Note that y'>0, yi<0 and y{ <0 on (a, 00) are contradictory if

fKl/r= co and y{ <0, y>0, y'>0 cannot be true if fxp= ». Hence:

Theorem 1.2. If either f°°l/r= 00 or f"'p= » then rji(a) exists, in

fact, fji(b) exists for all b(E[a, =0).

Recall from [2] that the hypothesis of Theorem 1.2 is not sufficient

for the existence of either the first LN-con) ugate point 771(a) or pi(a).

However, /ocl/r= =0 and fxp= °° is sufficient for oscillation (i.e.,

there is a nontrivial solution of (1) with infinitely many zeros on

(a, co)).
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Corollary 1.2.1. If r{x) is positive and continuous on (a, oo) then

every equation of the form

(r(x)y")" - r(x)y = 0

is systems-conjugate and for each 6 G [a, ») the number f¡i(b) exists.

It should be noted here that for LN-con] ugate points, if for each

&G(a, oo ) there exists tji(&) then equation (1) is oscillatory [5]. That

this is not so for systems-conjugate points is shown by the following

example.

Example 1.1. p = r-e~2x, a = 0, in (1) gives

(12) {e~2xy")" - e-2zy = 0.

If y(x) is a solution of (12) then z(x) =e~zy(x) is a solution of ziv — 2z"

= 0 and z(x), hence y(x), can have at most three zeros, i.e., is LN-

disconjugate and r¡i{a) does not exist. However, f°°l/r = f'°e2x = oo

and f)i(a) exists by Theorem 1.2. This example was quoted in [2] as

a fourth-order equation where jiii(a) does not exist. Furthermore, the

conclusion of Theorem 1.2 for LTV-disconj ugate points would insure

oscillation of (1), which obviously is not so for (12). This example

will be investigated further in §4.

2. A special case. In equation (1) letg(x) =p{x) = l/r(x), continuous

and positive on [a, oo), and obtain the special case

(13) (y"/q(x))" - q(x)y = 0.

As in [l; 2] define the reciprocal equation of (1) to be

(1*) (y"/P(x))" - y/rix) = 0

and note that (13) is its own reciprocal. Furthermore the system

(4) a" - A(x)a = 0

is further simplified so that

A(ß) -q(x)(     ^

and is symmetric.

Lemma 2.1. If U*, V*, u*, v* is the fundamental sequence of solutions

of (1*) satisfying the identity Wronskian at x — a then

Ui = u*,    Vi = v*,    Ml m U*,    m m V*,
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and for equation (13) these identities specialize to

U\ = u,    Vi = v,   Mi = U,   vi = V.

Lemma 2.2.

/V(x)     v(x)\
Y(x) = ( )

\v(x)     V(x)J

is a fundamental matrix solution of (4) related to (13), in fact,

(14) Y" = AY,    Y(a) = 0,    Y'(a) = E.

Lemma 2.3. The first systems conjugate points, rji(a), is the first zero

on (a, co) o/det(F) = V2 — v2 = <r'/q (i.e., the first zero of V(x)—v(x)).

Lemma 2.4. The difference z(x) = V(x)—v(x) satisfies the second-

order equation and initial conditions

(15) z" + q(x)z = 0,        z(a) = 0,        z'(a) = 1.

From these results it follows immediately that

Theorem 2.1. In order for the fourth-order equation (13) to be sys-

tems-disconjugate it is necessary and sufficient that the second-order

equation (15) be disconjugate on (a, «>).

Therefore, one may use the known theory for disconjugacy of sec-

ond order equations (3), e.g. [l; 4; 6], to establish analogous proper-

ties of the fourth order case (13). For example, Lemma 2.4 and the

monotonicity result of Hille [4] for (15) readily verifies Theorem 1.1

for the special case (13).

The observation that the general solution of (13) is given by the

sum of the general solutions of y"+ q(x)y = 0 and y" — q(x)y = 0, to-

gether with Theorem 2.1, yields the oscillation criterion:

Theorem 2.2. The special fourth-order equation (13) is oscillatory if,

and only if, the second-order equation (15) is oscillatory.

Example 2.1. q(x)=k/ix2, k>0 and a = l in equation (13) yields

/4x2      \"       k
(16.) (T/<)   --,-0,

with f°°i/r< co and JKp< °°. Since z" + (l/4x2)2 = 0 is disconjugate

on (1, co) then (16*) with k^l is systems-disconjugate, i.e., ^i(a)

and fii(a) do not exist. For k>l, equation (16*) is oscillatory. This

example will be further investigated in §4.
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3. Applications of the special case. Return to the more general

system (4) with coefficient matrix

The symmetric part of a matrix A is defined [3] as A<>= (A-\-AT)/2

and in this case turns out to be

'—t(t+')G J) = "WG Ô)-
According to Hartmann and Wintner [3], if the symmetric equation

(4o) a" - Am = 0

is disconjugate on (a, <») then so is equation (4). But by Lemmas 2.2

and 2.3 equation (4) is disconjugate if, and only if, det(F0)= F2,— v%

is nonzero on (a, oo) where F0, V0, vq are the quantities of the preced-

ing section for the special equation (4o). By noting that V0 — Vo and

Fo+^o satisfy, respectively, the second-order equations:

z" + qo(x)z = 0    and    z" — q0(x)z = 0

it follows readily that

Theorem 3.1. If there exists a positive constant k such that for

q(x) = (k/r+p/k)/2, both second-order equations z"+g(x)z = 0 and

z" — q(x)z = 0 are disconjugate on [a, oo) then the fourth-order equation

(1) is systems-disconjugate on [a, oo) and, hence, LN-disconjugate

regardless of the sign of p(x). (Of course, if p>0 then z" — qz = 0 is

automatically disconjugate.)

4. Comparison of conjugate points. Recall from [2 ] that r¡i(a) and

|Ui(a) are the first zeros on (a, oo) of, respectively, a(x) and p(x) where

(recalling (7))

(18)   a = uv' — vu', p = U\v[ — viu{, T = u'v\ — v'ui( = uv{ — vu{).

Also the fact that if y and z are solutions of (1) then

s[y>z] = yzí ~ zyí ~ y'zi + z'yi = constant

yields that both <r(x) and â(x) are linearly independent solutions of

re' \      2vj.
—-) +—-a = 0 on (a, oo).

vl / v3
(19)



212 J. H. BARRETT [April

Since <x(a) = <r'(o) = (ra')'(a) = (ra')"(a)=Q, (ra')'"(a)>0 then at the

regular singular point x = a there is a higher order zero of <r(x) than

of è(x) and the Wronskian

kv2 rx   v2
&0-' — b'a = ■-gives <j(x) = k&(x) I     -; if à ^ 0 on (a, <x>).

r J a   rà2

Therefore, a zero of <r(x) on (a, co) yields a zero of â(x) and, hence,

one of c'(x).

Theorem 4.1. //771(a) exists then so does í¡i(a) and ßi(a).

The hypothesis of Theorem 4.1 cannot be weakened to the existence

of /xi(a) as is seen by further study of Example 2.1. As has already

been seen, 771(a) does not exist. Furthermore, if y(x) is a solution of

(I61) (4x2y")"-(l/4x2)y = 0 and t=(\n x)/21'2, then

E(t) = e~'i2ll"y(e2l/li) is a solution of #<iv> - H = 0.

Hence no solution of (16) can have more than 3 zeros on [l, 00) and

771(1) does not exist. For this simple case p'= —a' yielding p(x) = 1

-cr(x), v(x)=23i2e«2ll2H(t) and u(x) =e"2l/2[2flr-21'2ii], where

H(t) =sinh t-t and t = (In x)/21/2. Now,

o-(x) = i[(H)2 - HE] = 2(1 - cosh t) + t sinh t -> =0  as x -> co.

Therefore p(l) = 1 and p(x) —->— co as x—>cc and jui(l) exists, but there

are no other zeros of p(x) on (1, <») since à'>0 on (a, 00) implies

ir'>0 on (a, co).

Furthermore, the converse of Theorem 4.1 is not true, as was seen

by Example 1.1. However, separation theorems applied to (19) yield:

Theorem 4.2. i/ 771(a), 7)2(a) and 773(a) (first 3 zeros of a') all exist

then 771(a) exists and if à'(x) has infinitely many zeros on (a, co) then so

does <r(x) awa" equation (1) is oscillatory.

Return again to Example 1.1:

(12) (e~2xy")" - e~2xy = 0,        a = 0.

The fundamental solutions v(x) = (ex/2)h(x), where h(x)

= (sinh21'2x - 21'2x)/21'2. Furthermore, V"(x) = v(x), V(x)

= ex[-h'+3h/2+x] and v"(x) =ex[h'+3h/2+x]. Now, e~2x&' = 2h2

-(h')2+3hx+x2~-2-ii2xe2U2x as x->°o. Also, (e-2^')'" = 2f"

= — 2x(h-\-x) <0 on (0, <») and a' has at most one zero on (0, 00).

Therefore, <n(0) exists but i)2(0) does not. Finally, as was observed in

[2], p(x)>0 on (0, co) and /¿i(0) does not exist, and even a weaker

converse of Theorem 4.1 is not true.
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It would be interesting to know what conditions added to the

existence of (¡i(a) would imply the existence of 771(a) or ni(a).
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