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RIAS

METRIC TERNARY DISTRIBUTIVE SEMI-LATTICES
S. P. AVANN

In this paper we show that the ternary operation of a metric
ternary distributive semi-lattice, a generalization of the ternary
Boolean algebra of Grau [2], uniquely minimizes ternary distance.
This generalizes a result of Birkhoff and Kiss [1, Corollary 1, p. 749].
We show, conversely, that in a metric space unique minimizing of
ternary distance determines a ternary operation with respect to which
the space is a ternary distributive semi-lattice. Particularly, a lattice
whose graph satisfies the unique minimal ternary distance condition
and certain finiteness conditions must be distributive. This answers
a question proposed by Birkhoff and Kiss [1, p. 750].

1. Definitions and postulates. We state our results at the close of
this section.

A ternary distributive semi-lattice, hereinafter abbreviated TDSL,
is a set of J elements closed with respect to a ternary operation (a, b, ¢)
satisfying the following identities.

(T1) (a, a, b)=a.

(T2) (a, b, ¢) is invariant under all 6 permutations.

(T3) (a, (b, ¢, d), e)=((a, b, ¢), ¢, (a, d, ©)).

REMARK. The term, introduced by the author (Abstract 86, Bull.
Amer. Math. Soc. vol. 54 (1948) p. 79), is a natural one in view of
Lemma 3. If in Lemma 3 there exists a’ €3 satisfying
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(T4) (a, b, a’)=0>b for all bE3
then ®(a, 3) is a distributive lattice with @ and a’ as zero and unit
elements. If also J satisfies:

(T5) For each a&3J there exists a complement ¢’ €3 satisfying
(T4), then 3 becomes the Ternary Boolean Algebra of Grau [2] and
®(a, T) is a Boolean Algebra for each ¢ &3.

By a suitable permutation of the letters in (T3) Sholander in [4,
p. 801] was able to replace (T2) and (T3) by a single postulate (N).
His (M) is (T1).

We remark here that by virtue of (T2), (T3) can be written and
applied with many variations; particularly, the solo element in the
right member can be b or d.

In a metric space 9 we denote distance by bc¢ and introduce ternary
distance [x; b, ¢, d] =xb+xc+xd.

We shall be concerned with an undirected graph g with no loops,
i.e., the graph of a symmetric anti-reflexive binary relation R on a
set of elements: aRa is false for all a& g and aRb iff bRa. Two elements
b and ¢ are vertices of an edge iff bRc. Moreover, when § is connected,
it is a metric space with respect to distance defined: bb=0; bc=1 iff
bRc; bc=n iff bDRbR - - - Rb,=c is a minimal such sequence. An even
graph is one with no odd-sided polygons b;Rb;R - - - Rbant1Rbs.

The graph §(®) of a partially ordered set @ is defined by: dRc iff
b<cor b>c (<:is covered by).

We shall deal with the following two minimal ternary distance
postulates in a metric space 91 and a corresponding ternary operation
for each.

(U) For each (unordered) triple b, ¢, dEW there exists a unique
t=1[b, ¢, d]EM such that [¢; b, ¢, d]= (bc+cd+db)/2.

(V) For each triple b, ¢, dE M there exists a unique s= [b, ¢, d]EM
such that [s; b, ¢, d] <[x; b, ¢, d] for all xEM, x55.

By virtue of Lemma 1 we shall see that (U) implies (V) in 9.

Ternary betweenness relations and notation are defined as follows:

(TB) In a TDSL 3, (bxc)<>(b, x, c) =x.

(MB) In a metric space M, bxce>bx+xc=bc.

(VB) In a graph ¢ satisfying (V) or (U), [bxc]<[b, x, c]=x.

Finiteness conditions in terms of convex sets are defined as follows:

(TF) Ina TDSL 3, {xE3| (bxc)} is finite for all b, cE3.

(MF) In a metric space 91, {x€§m| bxc} is finite for all b, cEM.

(VF) In a graph g satisfying (V) or (U), {xE g| [bxc]} is finite for
all b, cEY.

When (TF) holds we define the graph g(3) of a TDSL 3 as follows:
bRc iff b#c and (b, %, ¢) =b or ¢ for all x&3. g(3) will be connected,
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as shown in Lemmas 4 and 7, and therefore metrizable in the manner
described above.
We now summarize our results.

THEOREM 1. If 3 is simultaneously a TDSL and a metric space in
whichk (TB) and (MB) are equivalent: (bxc)>bxc, then (U) is satisfied
(and also (V)).

THEOREM 2. If a TDSL 3 satisfies (TF), then the metric space §(3),
as defined and metrized above, satisfies (U). Moreover (TB) and (MB)
are equivalent.

THEOREM 3. A metric space M satisfying (U) is a TDSL with respect
to the ternary operation [b, c, d]. Moreover (MB) is equivalent to (VB)
(which is (TB)).

We define a unique ternary distance graph g, hereinafter called a
UTD graph, as one satisfying (MF) and (V).

THEOREM 4. A UTD graph satisfies (U) and is a TDSL with respect
to the ternary operation [b, ¢, d]. Moreover (MB) and (VB) are equiv-
alent.

THEOREM 5. If every a € £, a latlice with zero element 3, is of finile.
dimension, and if the graph (L) satisfies (MF) and (V), then £ is
distributive.

2. Ternary distributive semi-lattices. In this section we consider a
TDSL which is a metric space and prove Theorems 1 and 2.

LEMMA 1. In any metric space M
(MT1) [x;0, ¢, d] = (bc+cd+db)/2,
(MT?2) [x; b, ¢, @] = (bc+cd—+db)/2bxc-cxd - dxb.

Proor. (MT1) follows from taking one-half the sum of the in-
equalities bx+xc 2 bc, cx+xd = cd, dx+xb = db. Clearly equality holds
simultaneously in all three iff equality holds in (MT1).

LEMMA 2. In @ TDSL 3 (bic)-(ctd)-(dtb) is satisfied uniquely by
t=(b, c, d), where - denotes logical conjunction.

This follows easily from (T1-2-3). See [3, 8.4 and 8.13].

Proor oF THEOREM 1. Since (TB)—~(MB), by Lemma 2 we have
btc-ctd-dtb holding uniquely for t= (b, ¢, d). Whence by (MT2) and
(MT1) resp. [t; b, ¢, d]= (bc+cd+db)/2 < [x; b, ¢, d] for all x5¢.

LEMMA 3. For each a €3, a TDSL, the elements of 3 constitute a dis-
tributive semi-lattice ®(a, 3), closed with respect to symmetric join of



410 S. P. AVANN June

meets of triples (called by Sholander a median semi-lattice) as follows:
(1) The inclusion relation is given by b .c (and cD.b)«(a, b, ¢) =b.
(2) The zero element is a.
(3) ®(a, 3) is closed with respect to meet given by b\,c= (b, a, c).
(4) Existence of common upper bound bT.m and cT,m, implies
the join exists and is given by b\J.c= (b, m, c).
(5) Distributivity: existence of b\Jq,c implies dMa(b\Jqac) =(dM,b)
Ua(dNac).
(6) For all triples b, c, d there exists(bMac)\Ja(cMad)\Jo(dN,b),
which is (b, c, d).

The proof is a routine application of the postulates and is done in
[5, pp. 809-810].

LEMMA 4. Every principal ideal of ®(a, 3), namely ®(a, m)
= {x| (axm) }, is a distributive lattice, which is finite if (TF) is satisfied.

ProoF. The lemma follows from (4) of Lemma 3 and the fact that
one distributive law implies the other.

LEMMA 5. In a TDSL 3 (abc) - (acd) «>(abd) - (bed).

We prove this known result to illustrate applications of the postu-
lates. If (abc) - (acd), then (a, b,d) = (a, (a, b, c),d) = ((a, a,d), b, (a,c,d))
= (a, b, ¢) = b vyielding (abd). Also (b, ¢, d) = ((a, b, ©), ¢, d)
=((a, ¢, d), b, (c, ¢, d))=(c, b, ¢) =c so that (bcd) subsists. The con-
verse holds by symmetry.

LeEMMA 6. In ®(a, 3), b is covered by c£b: b <.c(c>qb) iff (a, b, c)=b
and (b, x, ¢)=b or c for all x&3.

ProoOF. Let b<4. Then (b, a, ¢)=(a, b, ¢)=b and (abc). For
arbitrary xE3 let (b, x, ¢) =d. Then also (bdc) by Lemma 2. Applying
Lemma 5 with roles of ¢ and d interchanged, we obtain (ebd) - (adc).
By Lemma 3 aC.bC.dTqc, and the hypothesis requires d=»5 or
d=c. Conversely, let (b, x, ¢)=b or ¢ for all x and (b, a, ¢) =b. Then
immediately dCqc. Assume aC b T .xCqc so that (abx) - (axc) - (abc).
By Lemma 5 (bxc) so that x = (b, x, c), which must be b or ¢ as desired.

LeEmMA 7. In @ TDSL 3 satisfying (TF), bRc in g(3) iff bRsc in
9(®(a, 3)), where R, is S4. Thus §(3) and g(®(a, 3)) are isometric.

Proor. In §(3) bRc iff (b, x, ¢) =b or ¢ for all x including (b, a, c) =b
or ¢. Hence by Lemma 6 bRc iff b S .¢ in ®(a, 3) iff bR4¢ in J(®(a, 3)).

LeEMMA 8. In a TDSL 3 satisfying (TF), (TB) and (MB) are equiv-
alent.
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Proor. Given (abc). Then (a, b, ¢)=b and bC,c in the principal
ideal ®(a, ¢). The latter is a finite distributive lattice by Lemma 4 and
satisfies the Jordan-Dedekind chain condition. Therefore a chain
<0<+ <o0m=bEP(a, ¢) exists and minimizes a sequence
aR.x1R, - - - R:b, where R, is S, The corresponding sequence of
J(3) of Lemma 7: aRa1R - - - Ra,=0 is thus minimal so that ab
=8,[b], the dimension of b in ®(a, 3). Similarly ac=38,[c]. Again,
b<ab1 <, -+ <gbp=c¢ minimizes sequences bR, - - - Ri¢ and by
virtue of Lemma 7 yields a corresponding minimal sequence bRbR
-« - Rb,=c of §(3) of length bc=n. The total chain ¢ <.: <, * - -
<a@m=b<eh1<q * - + <obn=c, again in view of the Jordan-Dedekind
chain condition in ®(a, ¢), yields a minimal chain aRaiR - - - Ran
=bRbiR - - - Rb,=c. Hence ac=20,[c]=08,[b]+bc=ab+bc, yielding
abc. Conversely suppose abc holds. Let d=(a, b, ¢). By Lemma 2
(adb) - (bdc) - (cda). By the proof just completed adb-bdc-cda. Hence
0 = (ad + db — ab)/2 4+ (bd + dc — bc)/2 — (cd + da — ca)/2
=bd — (ab+bc—ca)/2=bd — (ac—ca)/2=bd. Thus b=d, (a, b, ¢)=b,
and (abc).

PRroOF OF THEOREM 2. Lemma 8 completes the hypothesis of Theo-
rem 1,

3. Unique ternary distance graphs. We prove Theorems 3, 4 and §
in this section.

LEMMA 9. In a metric space satisfying (U), (VB) and (MB) are
equivalent.

ProoF. [bed] iff ¢ = [b, ¢, d] iff [c; b, ¢, d] = bc + cc + cd
= (bc+cd+db)/2 iff bc+cd=>bd iff bed.

LEMMA 10. (Condition (D) of Sholander [4, p. 804]). For each un-
ordered triple b, c, AEM, a metric space satisfying (U), there exists a
unique sEIM such that bsc-csd-dsb, namely s=[b, ¢, d].

Proor. By (U) there exists unique s= [b, ¢, d] such that [s; b, c, d]
= (bc+cd+db)/2. We apply Lemma 1. By (MT2) bsc-csd-dsb, and
for x>s [x; b, ¢, d]> (bc+cd+db)/2 so that at least one of bxc, cxd,
dxb fails.

LEMMA 11. In any metric space abc-acd<abd-bcd.

This is an elementary property of metric spaces.

ProoF oF THEOREM 3. The metric betweenness relation bcd satis-
fies the set of conditions Z1(D, Bi, F) of Sholander [4, pp. 803-805]:
(D) by Lemma 10; (B:) aba—a=»b, trivially; and (F) abc-acd
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—dba («<»abd) by Lemma 11. By Lemma 9 the equivalent between-
ness relation [bed] also satisfies Z;. Sholander showed in [4, 4.10]
that the corresponding ternary operation [b, ¢, d] satisfies his condi-
tions (M) and (N). The latter, he showed in [3, 8.3], are equivalent
to (T1-2-3).

CoroLLARY TO THEOREM 3. If a metric space M satisfies (U) and
for some pair a, a’ EM axa’ for all xEM, then ®(a, 3)=FC(a, a’) is a
distributive lattice with a and o' as zero and unit elements.

Proor. By Theorem 3 91 becomes a TDSL 3 under [b, ¢, d] with
[axa’] for all xE€3. l.e., aCaxTaa’ for all x. Lemma 4 completes the
proof.

- LEMMA 12. A necessary and sufficient condition that a connected graph
g be even is that bRc implies bx —cx= + 1. Furthermore, a UTD graph
s even.

Proor. Given ¢ is even and suppose bRc. Then 1=bc=bx—cx
= —bc= —1. But bx#cx since bx—cx+1=bx~+cx+bc=0 (mod 2).
Hence bx —cx= + 1. Conversely suppose J is not even. Two adjacent
vertices b, ¢ and the opposite vertex x of a smallest odd-sided polygon
give bc = 1 and bx = cx. Moreover [¢;x,b,c] =cx+1=bx+1=[b;x,b,¢c]
<xy+by+cy=[y; x, b, c] for b>y>c. Hence b and ¢ (and possibly
v also) are tied for minimal ternary distance from x, b, ¢ so that g is
not a UTD graph. We have thus proved the contrapositives of the
converse and the second statement.

We may note at this point that in a UTD graph the ternary opera-
tion [b, ¢, d] satisfies (T2) trivially by symmetry. It also satisfies
(T1). Forif x#a, [x;a,a,b]=ax+(ax+bx) >aa+aa+ab=[a;a,a,b]
so that a = [a, a, b]. We shall circumvent a direct proof of (T3), which
would be tedious.

LeEMMA 13. In a UTD graph (MB) and (VB) are equivalent.

Proor. First suppose abc. If xb, [x; a, b, c]=(ax+cx)+bx>ac
=ab+bc=[b; a, b, c]. Hence b= [a, b, c] and [abc] subsists. Con-
versely, suppose [abc]. We shall prove by induction on n=bc that
abc follows. We note that abc holds trivially for n=0. When n=1,
ab=ac +1 by Lemma 12. But ab=ac+1=ac+bc yields acb and [acb]
by the first part of this proof and leads to the contradiction [a, b, ]
=[a, ¢, b]=c#b=]a, b, c]. Thus ac=ab+bc as desired. Assume
[a, b, ¢]=b implies abc whenever n <k. Consider [a, b, ¢]=b with
n=bc=k+1. Let bRbo with b, on minimal b—c chain: bby=1 and
bbo+bec=bc. Since b= [a, b, c], ab+bc=[b; a, b, c]<[bo; a, b, c]



1961] METRIC TERNARY DISTRIBUTIVE SEMI-LATTICES 413

=abo+ (bbo+boc) =abo+bc. Thus ab <aby and aby=ab+1 by Lemma
12. Now [b; a, by, c]=ab+1+bc>ab+bc=ab+1+boc=aby+boc
= [bo; a, b, c]. Also for xb we apply hypothesis and Lemma 12 to
obtain [x; a, be, ¢]=[x; a, b, c]+(box—bx) =1+ [b; a, b, c]+(£1)
2 [b; a, b, c]=ab+bc=abo+bec= [bo; a, boy ¢]. Uniqueness of min-
imality in (V) requires that by= [a, bo, ¢] or [abec]. But bec=bc—1=E.
By the induction hypothesis aboc subsists. Hence ac=abo+boc
=ab+bc yielding abc. The induction is complete.

PRrOOF OF THEOREM 4. Let s=[b, ¢, d]. Then for x#s[s; b, s, c]
= (bs+cs+ds) —ds <bx+cx+(dx—ds) Sbx+cx+sx=[x; b, s, cl.
Thus s=[b, s, c] and [bsc] subsists. Similarly [csd] and [dsb]. Then
bsc-csd-dsb by Lemma 13. By Lemma 1 and (V) we have [s; b, ¢, d]
= (bc+cd+db)/2 < [x; b, ¢, d] for all x5, This is (U). Hence Theo-
rem 4 now follows from Theorem 3.

LEMMA 14. In any lattice or semi-lattice if aRbRcRARa, where Ris S,
alternate R’s are opposite directional covering.

This follows by definition of covering and uniqueness of join and
meet when they exist.

LeMMA 15. In a lattice £, for which §(£) is a UTD graph with re-
spect to the ternary operation determined by the metric, bSc in £ iff b#c
and [b, x, c]=b or c for all xEJ(L).

ProoF. If bSc in £, then by Lemma 12 g(£) is even and bx—cx
=+1=+bc in g(£). Thus [bex] or [cbx], ie., [, x, c]=c or b. If
b?éc, then b=c or there exists r&g(£) with b, r, ¢ all distinct such
that [brc] or [b, 7, c]=r#b or c.

Proor oF THEOREM 5. Finite dimensionality of the elements of £
makes g(£) well defined and connected through z, so thatitisa UTD
graph. Hence by Theorems 3 and 4 g(£) isa TDSL with respect to the
operation [a, b, c], and (MB) is equivalent to (VB) (which is (TB)).
Moreover all the lemmas are valid and applicable. By Lemma 3
®(z, §(£)) is a distributive semi-lattice with the same zero element 2
of £ We shall show that ®(z, §(£)) is isomorphic to £ under the
identity correspondence c«>c. Combining the results of Lemmas 6 and
15 bS,c in ®(z, §(£)) iff bSc in £. Accordingly, it will be sufficient
to show that

(S) b<.cin @(z, g(£)) implies b <c in L.

We employ an induction on #=zc, the distance from z to ¢ in g(&£),
and note (S) is trivially true for n=1:z<,cin ®(z, §(£)) iff z<cin L.
Assume (S) holds for n<k. Now consider b<,c with 2b=Fk and zc
=k+1 in J(£), and assume that b>c¢ in £. From all necessarily
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finite descending chains 5>¢> - - - in £ select one with an earliest
agreement of > and >, b=ci<ct=0<; " <ilr1<olr>Lrp1
S, - - - . By Lemma 4 the ideal ®(z, ¢,) of ®(z, §(£)) is a distributive
lattice. Hence by lower semi-modularity ¢,—1>.d=c¢,1/MN\:Cri1 <iCri1.
On the other hand ¢,_1>¢,>¢,41<d <c,1, where the direction of the
last two coverings are required by Lemma 14. If =1, the induction
hypothesis requires b>d <c; contradicting c2<d <b. If r>1, then
¢,—1>d contradicts the minimality of r. Hence our assumption b>¢
is false, and the induction on #=zc for validity of (S) is complete.
Therefore ®(z, g(£)) is isomorphic to £ and is a distributive lattice
(rather than a semi-lattice). Thus £ itself is distributive.
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