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RIAS

METRIC TERNARY DISTRIBUTIVE SEMI-LATTICES

S. P. AVANN

In this paper we show that the ternary operation of a metric

ternary distributive semi-lattice, a generalization of the ternary

Boolean algebra of Grau [2], uniquely minimizes ternary distance.

This generalizes a result of Birkhoff and Kiss [l, Corollary 1, p. 749].

We show, conversely, that in a metric space unique minimizing of

ternary distance determines a ternary operation with respect to which

the space is a ternary distributive semi-lattice. Particularly, a lattice

whose graph satisfies the unique minimal ternary distance condition

and certain finiteness conditions must be distributive. This answers

a question proposed by Birkhoff and Kiss [l, p. 750].

1. Definitions and postulates. We state our results at the close of

this section.

A ternary distributive semi-lattice, hereinafter abbreviated TDSL,

is a set of 3 elements closed with respect to a ternary operation (a, b, c)

satisfying the following identities.

(Tl) (a,a,b)=a.

(T2)  (a, b, c) is invariant under all 6 permutations.

(T3)  (a, (b, c, d), e) = ((a, b, e), c, (a, d, e)).

Remark. The term, introduced by the author (Abstract 86, Bull.

Amer. Math. Soc. vol. 54 (1948) p. 79), is a natural one in view of

Lemma 3. If in Lemma 3 there exists o'G3 satisfying
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(T4) (a, b, a')=Morall&G3

then (P(a, 3) is a distributive lattice with a and a' as zero and unit

elements. If also 3 satisfies:

(T5) For each aG3 there exists a complement a'G 3 satisfying

(T4), then 3 becomes the Ternary Boolean Algebra of Grau [2] and

(P(a, T) is a Boolean Algebra for each aG3.

By a suitable permutation of the letters in (T3) Sholander in [4,

p. 801] was able to replace (T2) and (T3) by a single postulate (N).

His (M) is (Tl).

We remark here that by virtue of (T2), (T3) can be written and

applied with many variations; particularly, the solo element in the

right member can be b or d.

In a metric space SKI we denote distance by be and introduce ternary

distance [x; b, c, d]=xb+xc+xd.

We shall be concerned with an undirected graph ¿J with no loops,

i.e., the graph of a symmetric anti-reflexive binary relation R on a

set of elements: aRa is false for all aE$ and aP° iff bRa. Two elements

b and c are vertices of an edge iff bRc. Moreover, when § is connected,

it is a metric space with respect to distance defined : bb = 0 ; be = 1 iff

bRc; bc = n iff bRbiR ■ ■ ■ Rbn = c is a minimal such sequence. An even

graph is one with no odd-sided polygons bxRb2R • • ■ Rb2n+iRbi.

The graph $((P) of a partially ordered set (P is defined by: bRc iff

ô <c or ¿> >c ( < : is covered by).

We shall deal with the following two minimal ternary distance

postulates in a metric space 3T£ and a corresponding ternary operation

for each.

(U) For each (unordered) triple b, c, <2G3H there exists a unique

i=[6, c, <f]G9H such that [t; b, c, d] = (bc+cd+db)/2.
(V) For each triple b, c, dGSdl there exists a unique ss [b, c, <2]G9TC

such that [s; b, c, d] < [x; b, c, d] for all xGSTC, xt^s.

By virtue of Lemma 1 we shall see that (U) implies (V) in 9TC.

Ternary betweenness relations and notation are defined as follows :

(TB) In a TDSL 3, (bxc)++(b, x, c)=x.

(MB) In a metric space 9TC, bxc+^bx-\-xc = bc.

(VB) In a graph ¿J satisfying (V) or (U), [focc]<->[£>, x, c]=x.

Finiteness conditions in terms of convex sets are defined as follows :

(TF) In a TDSL 3, {*G3| (bxc)} is finite for all b, cG3.
(MF) In a metric space Siïî, {xG:3Tlj ôxc} is finite for all b, cG9TC-

(VF) In a graph ¿J satisfying (V) or (U), {^Gá| [bxc]} is finite for

all b, cES-
When (TF) holds we define the graph ¿J(3) of a TDSL 3 as follows:

bRc iff b^c and (b, x, c)=b or c for all ¡cG3. ,0(3) will be connected,
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as shown in Lemmas 4 and 7, and therefore metrizable in the manner

described above.

We now summarize our results.

Theorem 1. 7/ 3 is simultaneously a TDSL and a metric space in

which (TB) and (MB) are equivalent: (bxc)*-+bxc, then (U) is satisfied

(and also (V)).

Theorem 2. If a TDSL 3 satisfies (TF), then the metric space ¿1(3),

as defined and metrized above, satisfies (U). Moreover (TB) and (MB)

are equivalent.

Theorem 3. A metric space 911 satisfying (U) is a TDSL with respect

to the ternary operation [b, c, d]. Moreover (MB) is equivalent to (VB)

(which is (TB)).

We define a unique ternary distance graph g, hereinafter called a

UTD graph, as one satisfying (MF) and (V).

Theorem 4. A UTD graph satisfies (U) and is a TDSL with respect

to the ternary operation [b, c, d\. Moreover (MB) and (VB) are equiv-

alent.

Theorem 5. If every aE£, a lattice with zero element z, is of finite

dimension, and if the graph $(£) satisfies (MF) and (V), then £ is

distributive.

2. Ternary distributive semi-lattices. In this section we consider a

TDSL which is a metric space and prove Theorems 1 and 2.

Lemma 1. 7ra any metric space 3H

(MT1)  [x;b, c, d]^(bc+cd+db)/2,
(MT2)  [x; b, c, d] = (bc+cd+db)/2<r+bxc-cxd-dxb.

Proof. (MT1) follows from taking one-half the sum of the in-

equalities bx+xc^bc, cx+xd^cd, dx+xb^db. Clearly equality holds

simultaneously in all three iff equality holds in (MT1).

Lemma 2. 7« a TDSL 3 (btc) • (ctd) • (dtb) is satisfied uniquely by
t=(b, c, d), where • denotes logical conjunction.

This follows easily from (Tl-2-3). See [3, 8.4 and 8.13].

Proof of Theorem 1. Since (TB)<->(MB), by Lemma 2 we have

btc-ctd-dtb holding uniquely for t=(b, c, d). Whence by (MT2) and

(MT1) resp. [/; b, c, d] = (bc+cd+db)/2 < [x; b, c, d] for all x-tt.

Lemma 3. For each oG3, a TDSL, the elements of 3 constitute a dis-

tributive semi-lattice <P(a, 3), closed with respect to symmetric join of
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meets of triples (called by Sholander a median semi-lattice) as follows :

(1) The inclusion relation is given by ¿>Ç„c (and c~Dab)<-+(a, b, c) =b.

(2) The zero element is a.

(3) (P(a, 3) is closed with respect to meet given by br\ac—(b, a, c).

(4) Existence of common upper bound bÇ.am and cC.am, implies

the join exists and is given by b{Uac= (b, m, c).

(5) Distributivity: existence of b\Jac implies dC\a(b^Jac) = (df~\ab)

yJa(dC\ac).

(6) For all triples b, c, d there exists(br\ac)^Ja(cr\ad)yja(dC\ab),

which is (b, c, d).

The proof is a routine application of the postulates and is done in

[5, pp. 809-810].

Lemma 4. Every principal ideal of (?(a, 3), namely 6>(a, m)

= {x \ (axm)}, is a distributive lattice, which is finite if (TF) is satisfied.

Proof. The lemma follows from (4) of Lemma 3 and the fact that

one distributive law implies the other.

Lemma 5. In a TDSL 3 (abc) ■ (acd)<-*(abd) ■ (bed).

We prove this known result to illustrate applications of the postu-

lates. If (abc) -(acd),then (a,b,d) = (a, (a,b,c),d) = ((a,a,d),b, (a,c,d))

= (a, b, c) = b yielding (abd). Also (b, c, d) = ((a, b, c), c, d)

= ((a, c, d), b, (c, c, d)) = (c, b, c)=c so that (bed) subsists. The con-

verse holds by symmetry.

Lemma 6. In (?(a, 3), b is covered by c^b: b <ac(c>ab) iff (a, b,c) = b

and (b, x, c)=b or c for all ïG3.

Proof. Let b<ac. Then (b, a, c) = (a, b, c)=b and (abc). For

arbitrary xG3 let (b, x, c) —d. Then also (bde) by Lemma 2. Applying

Lemma 5 with roles of c and d interchanged, we obtain (aid) • (ode).

By Lemma 3 aCZaZ>C0¿Cac, and the hypothesis requires d = b or

d — c. Conversely, let (b, x, c) =b or c for all x and (b, a, c) =b. Then

immediately bÇZac. Assume aÇ^abQaxÇ^aC so that (abx) ■ (axe) • (abc).

By Lemma 5 (bxc) so that x= (¿>, x, c), which must be b or c as desired.

Lemma 7. In a TDSL 3 satisfying (TF), bRc in ¿J(3) iff bRaC in
g(9(a, 3)), where Ra is $a. Thus ¿j(3) and $(®(a, 3)) are isometric.

Proof. In ¿J(3) bRc iff (b, x, c) =b or c for all x including (b, a,c)=b

or c. Hence by Lemma 6 bRc iff b ̂ „c in <P(a, 3) iff bRac in 3(6>(a, 3)).

Lemma 8. In a TDSL 3 satisfying (TF), (TB) and (MB) are equiv-

alent.
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Proof. Given (abc). Then (a, b, c)=b and bÇac in the principal

ideal (P(o, c). The latter is a finite distributive lattice by Lemma 4 and

satisfies the Jordan-Dedekind chain condition. Therefore a chain

o<aOi<o • • • <oOm = oG<P(o, c) exists and minimizes a sequence

aRaXiRa ■ ■ ■ Rab, where Ra is ^0. The corresponding sequence of

¿J(3) of Lemma 7: aRaiR ■ ■ ■ Ram = b is thus minimal so that ab

= Sa[b], the dimension of b in <P(a, 3). Similarly oc = 0o[c]. Again,

b<abi<a ■ ■ ■ <abn = c minimizes sequences bRa • ■ - Rac and by

virtue of Lemma 7 yields a corresponding minimal sequence bRbiR

■ • ■ Rb„ = c of $(3) of length bc = n. The total chain o<0Oi<a • • •

<aOm = &<aöi<a • • ■ <ao„ = c, again in view of the Jordan-Dedekind

chain condition in (P(o, c), yields a minimal chain aRaiR ■ ■ ■ Ram

= bRhR • • • Rbn = c. Hence ac = ôa[c] = ôa[b]+bc = ab+bc, yielding

abc. Conversely suppose abc holds. Let d=(a, b, c). By Lemma 2

(adb) ■ (bdc) ■ (cda). By the proof just completed adb-bdc-cda. Hence

0 = (ad + db - ab)/2 + (bd + dc - be)/2 - (cd + da - ca)/2
= bd—(ab+bc — ca)/2 = bd — (ac — ca)/2 = bd. Thus b = d, (a, b, c)=b,

and (abc).

Proof of Theorem 2. Lemma 8 completes the hypothesis of Theo-

rem 1.

3. Unique ternary distance graphs. We prove Theorems 3, 4 and 5

in this section.

Lemma 9. 7ra a metric space satisfying (U), (VB) and (MB) are

equivalent.

Proof, [bed] iff c = [ô, c, d] iff [c; b, c, d] = be + cc + cd

= (bc+cd+db)/2 iff bc+cd = bd iff bed.

Lemma 10. (Condition (D) of Sholander [4, p. 804]). For each un-

ordered triple b, c, dG9TC, o metric space satisfying (U), there exists a

unique sG3TC such that bsc-csd-dsb, namely s=[b, c, d].

Proof. By (U) there exists unique s=[b, c, d] such that [s; b, c, d]

= (bc+cd+db)/2. We apply Lemma 1. By (MT2) bsc-csd-dsb, and

for x¥-s [x; o, c, d]>(bc+cd+db)/2 so that at least one of bxc, cxd,

dxb fails.

Lemma il. In any metric space abc • acd<r+abd - bed.

This is an elementary property of metric spaces.

Proof of Theorem 3. The metric betweenness relation bed satis-

fies the set of conditions 2i(7>, Pi, P) of Sholander [4, pp. 803-805]:

(D)   by  Lemma   10;   (Bi)   aba-^a = b,  trivially;  and   (F)   abc-acd
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—fdba (*-+abd) by Lemma 11. By Lemma 9 the equivalent between-

ness relation [bed] also satisfies Si. Sholander showed in [4, 4.10]

that the corresponding ternary operation [b, c, d] satisfies his condi-

tions (M) and (N). The latter, he showed in [3, 8.3], are equivalent

to (Tl-2-3).

Corollary to Theorem 3. 2/ a metric space 9TC satisfies (U) and

for some pair a, a'G9Tl axa' for all xGSTC, then <P(a, 3) = <?(a, a') is a

distributive lattice with a and a' as zero and unit elements.

Proof. By Theorem 3 9TÍ becomes a TDSL 3 under [b, c, d] with

[axa'] for all xG3. I.e., aÇaxÇZaa' for all x. Lemma 4 completes the

proof.

Lemma 12. A necessary and sufficient condition that a connected graph

g be even is that bRc implies bx — cx= ±1. Furthermore, a UTD graph

is even.

Proof. Given g is even and suppose bRc. Then l=bc^bx—cx

_■ — bc= — 1. But bxT^cx since bx — cx + 1 =bx-\-cx+bc=0 (mod 2).

Hence bx — cx= ±1. Conversely suppose g is not even. Two adjacent

vertices b, c and the opposite vertex x of a smallest odd-sided polygon

give be — 1 and bx = ex. Moreover [c;x, b,c]=cx + 1 =bx + l= [b;x,b,c]

¿xy+by+cy= [y; x, b, c] for bj±yj¿c. Hence b and c (and possibly

y also) are tied for minimal ternary distance from x, b, c so that g is

not a UTD graph. We have thus proved the contrapositives of the

converse and the second statement.

We may note at this point that in a UTD graph the ternary opera-

tion [b, c, d] satisfies (T2) trivially by symmetry. It also satisfies

(Tl). For if x^a, [x;a,a, b]=ax-\-(ax+bx)>aa-[-aa-\-ab= [a;a,a, b]

so that a = [a, a, b]. We shall circumvent a direct proof of (T3), which

would be tedious.

Lemma 13. In a UTD graph (MB) and (VB) are equivalent.

Proof. First suppose abc. If x^b, [x; a, b, c] = (ax+cx)+bx>ac

= ab+bc= [b; a, b, c]. Hence b= [a, b, c] and [abc] subsists. Con-

versely, suppose [abc]. We shall prove by induction on n = bc that

abc follows. We note that abc holds trivially for re = 0. When « = 1,

ab = ac +1 by Lemma 12. But ab = ac +1 = ac + be yields acb and [acb ]

by the first part of this proof and leads to the contradiction [a, b, c]

= [a, c, b]=C9^b=[a, b, c]. Thus ac = ab + bc as desired. Assume

[a, b, c] = b implies abc whenever w=&. Consider [a, b, c] = b with

n = bc = k-\-l. Let bRb0 with b0 on minimal b — c chain: 2>2>o=l and

bbo+boc = bc. Since b=[a, b, c], ab+bc=[b; a, b, c]<[bo; a, b, c]



1961] METRIC TERNARY DISTRIBUTIVE SEMI-LATTICES 413

= abo + (bbo+b0c)=abo+bc. Thus ab<ab0 and ab0 = ab + l by Lemma

12. Now [0; o, 60, c]=ab + l+bc>ab+bc = ab + l+boc = abo+boc

= [bo; a, bo, c]. Also for x?*b we apply hypothesis and Lemma 12 to

obtain [x; a, b0, c]=[x; a, b, c] + (b0x — ox) èl + [b; a, b, c] + (±l)

è [b; a, b, c]=ab+bc = abo+boC= [bo; a, bo. c]. Uniqueness of min-

imality in (V) requires that ¿o = [a, bo, c] or [oooc]. But boC = bc — 1 =k.

By the induction hypothesis aboC subsists. Hence ac = ab0+boC

= ab+bc yielding abc. The induction is complete.

Proof of Theorem 4. Let s= [b, c, d]. Then for x?*s[s; b, s, c]

= (bs+cs+ds)— ds<bx+cx+(dx — ds) =ox+cx-f-sx= [x; b, s, c].

Thus 5= [b, s, c] and [bsc] subsists. Similarly [csd] and [dsb]. Then

bsc-csd-dsb by Lemma 13. By Lemma 1 and (V) we have [s; b, c, d]

= (bc+cd+db)/2 < [x; b, c, d] for all xt^s. This is (U). Hence Theo-

rem 4 now follows from Theorem 3.

Lemma 14. 7ra any lattice or semi-lattice if aRbRcRdRa, where Ris ^,

alternate R's are opposite directional covering.

This follows by definition of covering and uniqueness of join and

meet when they exist.

Lemma 15. 7w o lattice £, for which $(£) is a UTD graph with re-

spect to the ternary operation determined by the metric, b^c in £iffb^c

and [b, x, c]=b or c for all xE$(£).

Proof. If b^c in £, then by Lemma 12 g(£) is even and bx — cx

= ±1= ±bc in $(£). Thus [bcx] or [cbx], i.e., [b, x, c]=c or b. If

b^c, then o = c or there exists rE3(£) with b, r, c all distinct such

that [brc] or [6, r, c] = rjib or c.

Proof of Theorem 5. Finite dimensionality of the elements of £

makes $(£) well defined and connected through z, so that it is a UTD

graph. Hence by Theorems 3 and 4 3(£) is a TDSL with respect to the

operation [a, b, c], and (MB) is equivalent to (VB) (which is (TB)).

Moreover all the lemmas are valid and applicable. By Lemma 3

(P(z, g(£)) is a distributive semi-lattice with the same zero element z

of £. We shall show that 6>(z, $(£)) is isomorphic to £ under the

identity correspondence c<-+c. Combining the results of Lemmas 6 and

15 b^zc in (P(z, ¿)(£)) iff b^c in £. Accordingly, it will be sufficient

to show that

(S) b<2c in (P(z, $(£)) implies b<c in £.

We employ an induction on n — zc, the distance from z to c in $(£),

and note (S) is trivially true for ra=l: z<zc in (?(z, $(£)) iff z<c in £.

Assume (S) holds for ra = ¿. Now consider ô<2c with zb = k and zc

= k + l in $(£), and assume that b>c in £. From all necessarily



414 S. P. AVANN

finite descending chains b>c> • • • in <£ select one with an earliest

agreement of > and >z: b = Co<zC = ci<z ■ ■ ■ <zcr-i<iCr>1Cr+\

5s2 • • ■ . By Lemma 4 the ideal (P(z, cr) of (P(z, g(£)) is a distributive

lattice. Hence by lower semi-modularity cr_i > ^ = cr_in,cr+i <,cr+i.

On the other hand cr-i>Cr>cr+i<d<c,-i, where the direction of the

last two coverings are required by Lemma 14. If r= 1, the induction

hypothesis requires b>d<c2 contradicting c2<d<b. If r>l, then

cr-i>d contradicts the minimality of r. Hence our assumption b>c

is false, and the induction on n = zc for validity of (S) is complete.

Therefore (P(z, g(£)) is isomorphic to £ and is a distributive lattice

(rather than a semi-lattice). Thus £ itself is distributive.
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