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A THEOREM ON OVERCONVERGENCE

F. SUNYER I BALAGUER

The conjecture announced by A. J. Macintyre [2; 3] is equivalent

to the theorem stated and proved below.

Theorem. Let D be an open domain containing the origin and let

f(z) be a function regular in D with the expansion f(z) = X" cnzn. Let

Di be a bounded closed domain contained in D. Then there exists a posi-

tive number \o = \o(D, Di) such that if cn = 0 for a sequence of intervals

nk Ú n ^ \rtk with X > Xo, then the subsequence of partial sums snk

= Xo* c»2" converges uniformly to f(z) in Di.

Proof. Let CD and CDi denote the complements of D and Di re-

spectively and let hi, i=l, 2, ■ ■ -, be the components of CD\. The

components can be considered as disjoint and there exists only one

unbounded component. The one unbounded component will be de-

noted as hi.

One can assert that there exists only a finite number of components

hi such that

(1) hiC\CD^ 0,

where 0 is the empty set. This assertion is proved as follows. Assume

that there exists an infinite number of components A,-, i^2, such that

(1) is valid. A bounded sequence of points a¿ can be formed where

aiEhiC\CD, i^2. Every a< is an element of CD and hence the dis-
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tance d from Di is at least ô>0. The limit point a of the sequence then

must be such that d(a, Di) ^5>0. Thus a is an element of CDi and

all points z in \z—a\ <5 must be in the same component.

Let the finite number of components be enumerated as hi, i = 1, 2,

• • • , N. Considering now

(2) D2= Di+    U    hi,
i-N+l

then D2 is a bounded closed domain and D2EDi. Since 53i" jv+i n*IS

bounded and Di is bounded by hypothesis, D2 is bounded. Also, since

hi(~\CD = 0, i^N+l, then hiED and D2 is contained in D. To prove

that D2 is closed note that its complement is 5^-i *¿ and is open.

Now N—Í polygonal arcs Lx, L2, ■ ■ • , LN_i can be chosen such

that D2—^ti~1Lk is simply connected. Also A—1 other polygon

arcs L{, L{, • • • , L#_i can be so chosen that LkC\L¡ = 0 and

D2—^íi~1L¿ is simply connected. Consider now the open circle

C(s, R) or \z-s\ <R and let S(L, R) = \j.eL C(s, R). Thus S(L, R)
is a strip enclosing the polygonal arc L. For R sufficiently small,

(3) S(Lk, R) r\ S(Lj, R) = 0.

Hence for R sufficiently small two closed simply connected domains

can be defined, D3 = A-Uf_1 S(Lk, R) and Pi = P,-Uf_1 S(L<, R)
such that Di+Di =D2. This follows from

z?3 + Di = d2 - i U s(¿*, Jc)l n | U s(l;,r)\

- z>2

by (3).
The proof of the theorem follows. An open bounded simply con-

nected domain A=A(£>, D3) can now be defined such that Z)3CA,

{|z| <r} ÇA, ÄC-C where r is the radius of convergence of f(z)

= ¿1q cnzn and Ä is the closure of A. From the Nevanlinna two-con-

stant theorem, if F(z) is regular in A

M (A) = l.u.b. | F(z) ¡ ,       M(d) = l.u.b. | F(z) \ ,
îSA I f | <r/2

then [l]

(4) M(Di) = l.u.b. | F(z)\   g {^(A)}»^^)}1-9

where 0>O depends on Dt and A. Using the majorization of rnt, where

rm=f(z)-Snk, rnt= XiS cnZ". if nk is large we get l.u.b.i,«,^ \rnk\ <
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ii(3/4)Xn* and l.u.b.,eA| r„k\ <H^1 where H and Hi are two constants

depending only on A. Thus by (4),

l.u.b. |r..|   á Hl-{B'l(3/éf1-,V-
zeD,

Thus if X>Xo(A, D3) there is overconvergence in D3. Similarly there

is overconvergence in D3' if X>X0(A, D{). Now since D3-\-D{ =D2

D-Di the theorem is proved.

Remark. By the same method similar results are proved for the

series of Dirichlet and for the integral of Laplace.
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