REFERENCES

- 1. J. L. Doob, Stochastic processes, New York, Wiley, 1953.
- 2. Nelson Dunford and J. T. Schwartz, Convergence almost everywhere of operator averages, J. Rational Mech. Anal. vol. 5 (1956) pp. 129-178.
 - 3. ——, Linear operators, part 1, New York, Interscience, 1958.
- 4. L. Fejér, La convergence sur son cercle de convergence d'une série de puissance effectuant une représentation conforme du cercle sur le plan simple, C. R. Acad. Sci. Paris vol. 156 (1913) pp. 46-49.
- 5. J. von Neumann, Functional operators, vol. 2, Princeton University Press, 1950.

University of Illinois and

IBM RESEARCH CENTER, YORKTOWN HEIGHTS, NEW YORK

A THEOREM ON OVERCONVERGENCE

F. SUNYER I BALAGUER

The conjecture announced by A. J. Macintyre [2; 3] is equivalent to the theorem stated and proved below.

THEOREM. Let D be an open domain containing the origin and let f(z) be a function regular in D with the expansion $f(z) = \sum_{0}^{\infty} c_n z^n$. Let D_1 be a bounded closed domain contained in D. Then there exists a positive number $\lambda_0 = \lambda_0(D, D_1)$ such that if $c_n = 0$ for a sequence of intervals $n_k \leq n \leq \lambda n_k$ with $\lambda > \lambda_0$, then the subsequence of partial sums $s_{n_k} = \sum_{0}^{n_k} c_n z^n$ converges uniformly to f(z) in D_1 .

PROOF. Let CD and CD_1 denote the complements of D and D_1 respectively and let h_i , $i=1, 2, \cdots$, be the components of CD_1 . The components can be considered as disjoint and there exists only one unbounded component. The one unbounded component will be denoted as h_1 .

One can assert that there exists only a finite number of components h_i such that

$$(1) h_i \cap CD \neq \emptyset,$$

where \emptyset is the empty set. This assertion is proved as follows. Assume that there exists an infinite number of components h_i , $i \ge 2$, such that (1) is valid. A bounded sequence of points a_i can be formed where $a_i \in h_i \cap CD$, $i \ge 2$. Every a_i is an element of CD and hence the dis-

tance d from D_1 is at least $\delta > 0$. The limit point a of the sequence then must be such that $d(a, D_1) \ge \delta > 0$. Thus a is an element of CD_1 and all points z in $|z-a| < \delta$ must be in the same component.

Let the finite number of components be enumerated as h_i , $i=1, 2, \dots, N$. Considering now

$$(2) D_2 = D_1 + \bigcup_{i=N+1}^{\infty} h_i,$$

then D_2 is a bounded closed domain and $D_2 \subset D_1$. Since $\sum_{i=N+1}^{\infty} h_i$ is bounded and D_1 is bounded by hypothesis, D_2 is bounded. Also, since $h_i \cap CD = \emptyset$, $i \ge N+1$, then $h_i \subset D$ and D_2 is contained in D. To prove that D_2 is closed note that its complement is $\sum_{i=1}^{N} h_i$ and is open.

Now N-1 polygonal arcs L_1, L_2, \dots, L_{N-1} can be chosen such that $D_2 - \sum_{1}^{N-1} L_k$ is simply connected. Also N-1 other polygon arcs $L'_1, L'_2, \dots, L'_{N-1}$ can be so chosen that $L_k \cap L'_j = \emptyset$ and $D_2 - \sum_{1}^{N-1} L'_k$ is simply connected. Consider now the open circle C(s, R) or |z-s| < R and let $S(L, R) = \bigcup_{s \in L} C(s, R)$. Thus S(L, R) is a strip enclosing the polygonal arc L. For R sufficiently small,

$$S(L_k, R) \cap S(L'_i, R) = \emptyset.$$

Hence for R sufficiently small two closed simply connected domains can be defined, $D_3 = D_2 - \bigcup_1^{N-1} S(L_k, R)$ and $D_3' = D_2 - \bigcup_1^{N-1} S(L_i', R)$ such that $D_3 + D_3' = D_2$. This follows from

$$D_{3} + D'_{3} = D_{2} - \left\{ \bigcup_{k=1}^{N-1} S(L_{k}, R) \right\} \cap \left\{ \bigcup_{j=1}^{N-1} S(L'_{j}, R) \right\}$$
$$= D_{2}$$

by (3).

The proof of the theorem follows. An open bounded simply connected domain $\Delta = \Delta(D, D_3)$ can now be defined such that $D_3 \subset \Delta$, $\{|z| < r\} \subset \Delta$, $\bar{\Delta} \subset D$ where r is the radius of convergence of $f(z) = \sum_{0}^{\infty} c_n z^n$ and $\bar{\Delta}$ is the closure of Δ . From the Nevanlinna two-constant theorem, if F(z) is regular in Δ

$$M(\Delta) = \text{l.u.b.} \mid F(z) \mid$$
, $M(d) = \text{l.u.b.} \mid F(z) \mid$,

then [1]

(4)
$$M(D_3) = \underset{z \in D_3}{\text{l.u.b.}} | F(z) | \leq \{M(\Delta)\}^{\theta} \{M(d)\}^{1-\theta}$$

where $\theta > 0$ depends on D_3 and Δ . Using the majorization of r_{n_k} , where $r_{n_k} = f(z) - s_{n_k}$, $r_{n_k} = \sum_{n_k}^{\infty} c_n z^{n_k}$ if n_k is large we get l.u.b._{|z|<r/>|<r/>|z|</r/>| r_{n_k}}

 $H(3/4)^{\lambda n_k}$ and l.u.b._{$s \in \Delta$} $|r_{n_k}| < H_1^{n_k}$ where H and H_1 are two constants depending only on Δ . Thus by (4),

l.u.b.
$$|r_{n_k}| \le H^{1-\theta} \{H_1^{\theta}(3/4)^{\lambda(1-\theta)}\}^{n_k}$$
.

Thus if $\lambda > \lambda_0(\Delta, D_3)$ there is overconvergence in D_3 . Similarly there is overconvergence in D_3' if $\lambda > \lambda_0(\Delta, D_3')$. Now since $D_3 + D_3' = D_2$ $\supset D_1$ the theorem is proved.

REMARK. By the same method similar results are proved for the series of Dirichlet and for the integral of Laplace.

REFERENCES

- 1. G. Bourion, L'ultraconvergence dans les séries de Taylor, Paris, Hermann, 1937.
- 2. A. J. Macintyre, Length of gaps and size of region of overconvergence. Preliminary report, Abstract 557-27, Notices Amer. Math. Soc. vol. 6 (1959) p. 186.
- 3. ——, Size of gaps and region of overconvergence, Collect. Math. vol. 11 (1959) pp. 165-174.

University of Barcelona, Spain