BIBLIOGRAPHY

- 1. L. Carleson, On a class of meromorphic functions and its associated exceptional sets, Thesis, University of Uppsala, 1950.
- 2. O. Frostman, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Medd. Lunds Univ. Mat. Sem. vol. 3 (1935) pp. 1-118.
- 3. , Sur les produits de Blaschke, Kungliga Fysiografiska Sällskapet i Lund förhandlingar vol. 12 (1942) pp. 169-182.

LINCOLN LABORATORY, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ON BOUNDED FUNCTIONS WITH ALMOST PERIODIC DIFFERENCES

RAOUF DOSS

The aim of this paper is to generalize to groups the well-known Bohl-Bohr theorem, which states that if the indefinite integral, $F(x) = \int_0^x f(t)dt$, of an almost periodic function f(x), is bounded, then it is almost periodic (see [1] or [2]).

No expression of the form $\int_0^x f(t)dt$ is available in groups, but observing that $F(a+x) - F(x) = \int_x^{x+a} f(t)dt$ is easily proved to be almost periodic, whatever be the constant a, we are led to the following

THEOREM. Let G be a multiplicative group and let the left differences F(ax) - F(x) be right almost periodic for every $a \in G$, where F is a given complex-valued function on G. If F(x) is bounded then it is right almost periodic.

We recall that a real or complex function $\phi(x)$ is right almost periodic if, from every sequence (c_n) we can extract a subsequence (b_n) for which the functions $\phi(xb_n)$ converge uniformly in G. In that case to every $\epsilon > 0$ there corresponds a finite number of elements of G, say s_1, \dots, s_k , such that to every $t \in G$ we can associate an integer $i \leq k$ for which

$$|\phi(xt) - \phi(xs_i)| < \epsilon$$
, whatever be $x \in G$.

PROOF OF THE THEOREM. It is sufficient to consider the case of a real function. Suppose that F(x) is not right almost periodic. Then there exists an $\alpha > 0$ and a sequence (c_n) , such that, in every subse-

Received by the editors June 30, 1960.

1961]

quence $(b_n) \subset (c_n)$ we can find b_p , b_q for which $\sup |F(xb_p) - F(xb_q)| > \alpha$. We can even suppress the modulus sign by exchanging if necessary b_p and b_q . In other words there exist $t \in G$, b_p , b_q such that

$$(1) F(tb_q^{-1}b_p) - F(t) > \alpha.$$

We shall prove that if $F(a_1x_1) - F(x_1) > \beta$, we can find x_2 , $a_2 \in G$ such that $F(a_2x_2) - F(x_2) > \beta + \alpha$. This will show that F(x) is unbounded, against the hypothesis, and the theorem will be proved.

So put $\phi(x) = F(a_1x) - F(x)$ and suppose that

(2)
$$\phi(x_1) = \beta + \epsilon > \beta.$$

Since $\phi(x)$ is right almost periodic let s_1, \dots, s_k be such that to every $t \in G$ we can associate an integer $i \le k$ for which $|\phi(xt) - \phi(xs_i)| < \epsilon/2$. In particular, for $x = x_1s_i^{-1}$: $|\phi(x_1s_i^{-1}t) - \phi(x_1)| < \epsilon/2$, so that by (2) $\phi(x_1s_i^{-1}t) > \beta + \epsilon/2$, i.e.,

(3)
$$F(a_1x_1s_i^{-1}t) - F(x_1s_i^{-1}t) > \beta + \epsilon/2.$$

Now consider the right almost periodic functions

$$\phi_i(x) = F(a_1x_1s_i^{-1}x) - F(x)$$
 $(i = 1, \dots, k).$

We can extract from the sequence (c_n) a subsequence (b_n) such that $|\phi_i(xb_q^{-1}b_p)-\phi_i(x)|<\epsilon/2$, whatever be $x\in G$, b_p , b_q , and $i=1, \cdots, k$. We deduce

$$| F(a_1x_1s_i^{-1}tb_q^{-1}b_p) - F(tb_q^{-1}b_p) - F(a_1x_1s_i^{-1}t) + F(t) |$$

$$= | \phi_i(tb_q^{-1}b_p) - \phi_i(t) | < \epsilon/2.$$

Hence by (1)

(4)
$$F(a_1x_1s_i^{-1}tb_q^{-1}b_p) - F(a_1x_1s_i^{-1}t) > \alpha - \epsilon/2.$$

(3) and (4) give, by addition, the required relation:

$$F(a_1x_1s_i^{-1}tb_q^{-1}b_p) - F(x_1s_i^{-1}t) > \alpha + \beta.$$

The proof is now complete.

REFERENCES

- 1. H. Bohr, Fastperiodische Funktionen, Berlin, Springer, 1932.
- 2. J. Favard, Leçons sur les fonctions presque périodiques, Paris, Gauthier-Villars, 1933.

CAIRO UNIVERSITY, EGYPT, U.A.R.