HOMOTOPY GROUPS OF CERTAIN DELETED
PRODUCT SPACES

C. W. PATTY!

If X is a topological space, let Dx denote the subset of X XX con-
sisting of the set of all points of the form (x, x), where x&X. Then
the deleted product space, X*, of X is the space X XX —Dx with the
relative topology. It follows from a theorem of Eilenberg (see [1,
p. 43]) that for a connected, finite, 1-dimensional polyhedron X, X * is
arcwise connected if and only if X is not an arc.

In this paper we prove the following theorem:

If X is a connected, finite, 1-dimensional polyhedron which is not an
arc, then IL,(X*) =0 for all k> 1.

DerFiNiTION 1. If X is a connected, finite, 1-dimensional poly-
hedron and 4 and B are subpolyhedra of X, let P(4AXB—Dx)
=U{r><s|r is a simplex of 4, s is a simplex of B, and rf\s=,®}.

REMARK 1. Let X be a connected, finite, 1-dimensional polyhedron
which is not an arc. If X does not have a vertex of order =3, then
X is a simple closed curve. If X does have a vertex of order =3, let
A’ be a triod in X. Then it is clear that there is a subdivision X’ of
X such that: (1) each simplex of A’ is a simplex of X’, (2) X’consists
of a finite number of 1-simplexes, 71, + - +, 7x, and (3) X’ can be real-
ized by starting with 4’ and adding one 1-simplex 7; at a time so that
either 7;\(UJZ} :) is a single vertex or ;M\(U{Z} r.) consists of two
vertices v1, v;, where each v; (=1, 2) is a vertex of order one in
U{Z} 7. In this paper, we shall assume that such a subdivision of X
has been made.

Definition 1 and Remark 1 may be found in [3]. It is shown in
[4] that if X is a connected, finite, 1-dimensional polyhedron, then
there is a deformation retraction of X* onto P(X*).

DEFINITION 2. A space X is said to be aspheric if II,(X) =0 for all
kE>1.

THEOREM 1. Let X =A\UB, where X, A, and B are connected poly-
hedra and ANB has a finite number of components C;. Suppose that

(1) A, B, and all the C; are aspheric.

(2) For each of the C;, the injections
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il: ,(C;) > i(A4) and
ii: I1,(C:) — 11(B) are isomorphisms into.
Then X is aspheric.
The above theorem is due to J. H. C. Whitehead [5, p. 159].

THEOREM 2. If X is a connected, finite, 1-dimensional polyhedron
which is not an arc, then X* is aspheric.

Proor. The author [3] has shown that if X is either a simple
closed curve or a triod, then X* has the homotopy type of a simple
closed curve.

The proof is by induction on the number of 1-simplexes of X. Sup-
pose that the theorem is true if X consists of #—1 1-simplexes, where
n=4. Now suppose X is not a simple closed curve and X consists of
n 1-simplexes. By Remark 1, it is possible to express X as X =A4\UB,
where A is a connected polyhedron which is the union of n—1 1-
simplexes, B is a 1-simplex, and either (1) ANB= {v} , where v is a
vertex of X, or (2) ANB={1}\U{v,}, where v; and v, are vertices of
order 2 in X. It is possible to choose 4 in such a manner that 4 con-
tains a vertex of order =3, and we assume that this has been done.

CasE (1). It is easy to see that

P(X*) = P(A*)\UP(BX A — Dx)U P(A X B— Dx)

and
P(A¥)Y "NP(BX A — Dx) = P(v X A — Dx).

First we show that
P(A¥)\JPBX A— Dx) = P(XX A — Dyx)

is aspheric. Let » be the other vertex of B. Then u X A4 Cp(B XA —Dy),
and it is easy to see that there is a deformation retraction of
P(BXA —Dx) onto X A. Therefore P(BXA —Dx) and #XA have
the same homotopy type. Hence II,(P(B XA —Dx)) =0 for all £>1
since # XA is a 1-dimensional polyhedron.

Let Cy, - - -, Cq denote the components of P(v XA —Dx). Each C;
is aspheric since it is a 1-dimensional polyhedron. For each C;, con-
sider the diagram

R 2

m,(Cy) ]—*’ (v X A4) :1:’ II,(4 X A4)

where j¥ and j; are the injection homomorphisms. It is clear that 73
is an isomorphism into since C;=vX4;, where 4;is a subpolyhedron
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of 4, and it is a well-known result that 7% is an isomorphism into.
Therefore j3j¥ is an isomorphism into.
Now consider the diagram
13 ki
kx J*
where &y and j3 are injection homomorphisms. By the above argu-
ment kY3 is an isomorphism into. Hence k¥ is an isomorphism into.
Now consider the diagrams

II;(C;) b d H1(1) x A) b d Hl(B X A),
kZi
1,(C)) > M(P(B X A — Dx)) —» (B X 4)

where each indicated homomorphism is the injection homomorphism.
By essentially repeating the above argument with respect to the new
diagrams, it can be shown that k¥ is an isomorphism into.

Therefore the conditions of Theorem 1 are satisfied, and hence
P(X XA —Dgx) is aspheric.

Now we consider

P(X X A — Dx)U P(A X B— Dx) = P(X¥).
Observe that
P(XX A—Dx) N\ P(AX B — Dx) = P(A X v— Dy).

Let Dy, - - -, Dy denote the components of P(A Xv—Dyx). Again
P(AXB—Dx) and D; (s=1, - - -, q) are aspheric. In order to show
that P(X*) is aspheric, we consider the four diagrams

I(D;) > (A4 X v) > (X X 4),
17
I(Ds) 5 M(P(X X 4 — Dx)) —— IL(X X A),
My(D;) — My(4 X v) = IIi(4 X B),
23
(D) %5 M(P(4 X B — Dx)) —— (4 X B)
where each indicated homomorphism is the injection homomorphism.
Using these four diagrams, we essentially repeat the above argu-
ment to show that m}y and m¥ are isomorphisms into. Then, by Theo-

rem 1, P(X*) is aspheric.
CasE (2). It is easy to see that
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P(X*) = P(A*)\UP(BX A — Dx) U P(A X B— Dx)
and
P(A*y "YP(BX A — Dx) = P(v1 X A — Dx) U P(vy X A4 — Dx).
First we show that
P(A*)\UPBX A — Dx) = P(XX A— Dx)

is aspheric. For 1=1, 2, P(v;XA —Dx) is a connected, 1-dimensional
polyhedron, and hence it is aspheric. Let A’ be the subpolyhedron of
A consisting of the union of all the 1-simplexes in 4 except those two
which have v; and v; as vertices. Then v; XA’ CP(B XA —Dx), and it
is easy to see that there is a deformation retraction of P(BXA4 —Dx)
onto v;XA’. Hence II,(P(BXA —Dx)) =0 for all k>1 since 1 X4’
is a connected, 1-dimensional polyhedron.
Consider the diagram
14 1

(P X 4 — D)) 2 (P(4*) 25 M4 X 4)

where kY and j} are the injection homomorphisms. Now jiky is an
isomorphism into since P(v;XA4 —Dx) and v;XA4 have the same
homotopy type. Therefore k¥ is an isomorphism into. By considering
a similar diagram, it is easy to see that the injection homomorphism

ke M(P(o; X A — Dx)) — i(P(B X 4 — Dx))

is an isomorphism into. Hence the conditions of Theorem 1 are satis-
fied, and therefore P(X XA —Dx) is aspheric.
Now we consider

P(X X A — Dx) U P(A X B— Dx) = P(X*).

By essentially repeating the above argument, it can be shown that
P(X*) is aspheric.
ExaMpPLE. Let X be the polyhedron shown in the following dia-

gram:

Then H,(X*, Z) is a free abelian group of rank 2 [2, p. 364]. There-
fore X* does not admit a 1-complex as deformation retract. This
answers in the negative a question asked by the referee.
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