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FREE-ALGEBRAIC CHARACTERIZATIONS OF PRIMAL
AND INDEPENDENT ALGEBRAS

F. M. SIOSON

In the study of many-valued logics, one is led to consider a

(finitary) algebra (A, Oi, ■ ■ ■ , on), or simply A, with a finite number

of primitive operations that generate by composition all functions in

AAm for each m< =°. Such algebras are called primal. For example,

the algebra ({0, l}, f\, ~) of truth-values in 2-valued logic and,

more generally, ({0, • • • , re —l}, min{x, y}, x + l (mod re)) in re-

valued Post logics are primal algebras. The truth-values of the

Lukasiewicz-Tarski logics ({0, • • • , re —lj, C, N), where Cxy

= max{0, y — x}, Nx — n — l—x, do not form a primal algebra, but if

the 0-ary (constant) operation 1 is admitted, then (JO, • • • , re —1},

C, N, 1) becomes a primal algebra. Note that any primal algebra is

finite, for if it were infinite, then the set of functions would be un-

countable, while the set of generated operations would be countable

at most.

If Oi, • ■ ■ , On are the operations symbols in the language for the

operations Oi, ■ ■ ■ , on of a fixed species (or similarity type), then by

the absolutely-free algebra (of the given species), ($4, oi, ■ ■ ■ , on),

with k generators aci, • • • , Xk, is meant the set of all formal expres-

sions defined inductively as follows:

Io. xi, ■ ■ ■ , XkE$k;

2°. for   each   i = I, ■ • ■ ,   re,   if   <pi, ■ ■ • ,   <pki E $*,   then   also

Oi(4>i, ■ ■ ■ ,(bk,)E$k;
with the operations defined by setting

Oi(4>i, ■ ■ • , 4>k,) = 0,(01, • • • , 0*,.)-
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Let£g*(ii) = {(<p,<p')G$*X<í>*:foreach heHom($k,A),h(d>) =h(d>')}.

From the fact that a homomorphism determines a congruence (rela-

tion) and an intersection of congruences is also a congruence, it fol-

lows that Eqk(A) is a congruence on $>*. The free A-algebra with k

generators Xi, • • ■ , xk is then defined as the quotient algebra Fk(A)

= $k/Eqk(A). Following Foster [4] we write d>=d>'(A) if (<p, d>')

eEqk(A) for some k. It is easy to see that Fk(A) is essentially the

algebra of all &-ary (compositional) operations in A.

Several characterizations of primal algebras are known [l; 4; 6].

We give another one here.

Theorem 1. An algebra (A, oi, ■ • ■ , on) is primal iff

F2(A) ^ A"\

where the cardinal of A is \A\ =o < « and A"2 is the direct product ofa*

copies of A.

Proof. Foster [3] proved the necessity part of this theorem by

using his fundamental structure theorem for primal algebras. A proof

independent of this result is easily reproduced.

From perfectly general considerations (see Foreword [2]), it is

well known that F2(A) is isomorphic with a subalgebra of the direct

power Aa*, where |.4| —a, and hence |Pä(.4)| ^o"2. Now suppose

further A is primal and hence finite; then each binary function

feAA is represented by an equivalence class of elements <p from d>2.

Whence a'* = \AA'\ g | F2(A) | and therefore F2(A)^Aa\

Conversely, suppose F2(A)=A"*, where \A\ =o< «>. Each equiv-

alence class E(d>) in F2(A) defines a function /of two variables on A.

By virtue of the given isomorphism, the correspondence E(d>)—>f is

onto and hence each binary function/ is represented by a composition

of the fundamental operations. Binary functions on any set generate

by composition all finitary functions (see [S]); whence primality

follows.

Corollary I. An algebra (A, oi, • ■ • , on) is primal iff

Fk(A) 9¿ A<*,

where k = 2 and \A\ = o< oo.

Another notion quite strongly tied up with the notion of primality

is that of independence. A class of algebras of the same species is inde-

pendent iff for every finite number of them Ai, • • ■ , Am and every

set of expressions <pi, ■ ■ ■ , d>m there exist another expression \p such

that<f>i=i(Ai), ■ ■ ■ ,d,m=iP(Am).
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We also give a characterization of this concept in terms of free

algebras.

Theorem 2. A finite set Ai, • • • , Am of finite algebras of the same

species is independent iff

Fm(Ai X'--Xi.)S Fm(Ai) X • • • X Fm(Am).

Proof. The following lemma will be used in proving the necessity

and sufficiency parts of the theorem and also Theorem 3.

Lemma 1. The set S={(Ei(<p), ■ ■ ■ , Em(4>))'■ <t>£$m}, where Ei(<p)

denotes the equivalence class in Fm(Ai) containing <f>, forms a subalgebra

of Fm(Ai)X • • • XFm(Am) isomorphic with Fm(AiX ■ • • XAm).

Proof of the Lemma. S is clearly a subset of Fm(Ai)X • • •

XFm(Am); and for any operation o,-, which is ki-ary,

0i[(Ei(<t>i), ■ ■ ■ , Em(d,i)), ■ ■ ■ , (Elfo,), • • • , Em(<bk,))]

= (oi(Ei(<t>i), • • • , Ei(4>k,)), ■ ■ ■ , 0i(Em(4>i), ■ ■ ■ , Em(<t>k,)))

= (Ei(oi(<t>i, • • • , &,.)), • • • , Em(0i(<bi, • • • , 0*,.)))

= (Ei(d>), ■■■, Em(d>)) E S.

Hence 5 is a subalgebra of Fm(Ai)X ■ ■ ■ XFm(Am).

Consider now the mapping/: Fm(^4iX • • • XAm)—>S defined by

f(E(<f>)) = (Ei(d>), • • • , Em(4>)). This is onto S and also 1-1, since if

/(£(<*>)) =/(£((/>')), then £,(#) =£<(*') or <p=<p'(A,) for each

i=l, ■ ■ ■ , m and hence 4>=4>'(AXX ■ ■ ■ XAm) or E(d>)=E(<P'). In

addition,

f[oi(E(<pi), ■■■, E(4>k<))] =f[E(oi(<bh ■■■, <bK))}

= (Ei(oi(d>i, • • • , d>ki)), ■ ■ ■ , Em(oi(d>i, • • • , 4>ki)))

= (oi(Ei(<bi), ■ ■ ■ , Ei(<pk,)), ■ ■ ■ , 0i(Em(<bi), ■ ■ ■ , Em(<Pk,)))

= 0i(f(E(<i>i)),---,f(E(4>ki))).

Thus we have Fm(AxX ■ ■ ■ XAm)^S.

To continue with the proof of the theorem, let now

(Ei(d>i), • • • , £*,(>„,)) G Fm(Ai) X ■ ■ ■ X Fm(Am).

If Ai, ■ • • , Am are independent, then corresponding to the expres-

sions 4>i, • • ■ ,<pm there exists another \f/ such that <f>i =ip(Ai), • • • ,<pm

=¿>(Am). Hence (£i(0,), • • • , Em(<pm)) = (Eity), • • • , £m(i«). This

implies Fm(^4i)X • • • XFm(Am)Ç^S. The other inclusion is obvious

by Lemma 1; whence 5=Fm(^4i)X • • • XFm(Am), from which the
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result is now clear by Lemma 1.

Conversely, suppose Ai, ■ ■ ■ , Am are finite algebras such that

Fm(Ai X ■ ■ ■ X Am) SÉ Fm(Ai) X ■ • ■ X Fm(Am). By Lemma 1,
S = Fm(Ai X ■ ■ • X Am). All algebras are finite and hence

S=Fm(Ai)X • • • XFm(Am). Thus, if there are given <pu ■ ■ ■ , <pm

e$m, then (Ei(<f>i), ■ ■ ■ , Em(d>m)) is in S, whence there exists an ex-

pression \p such that (Ei(\[r), • • • , Em(\¡/)) = (Ei(<pi), ■ ■ ■ ,Em(<pm)),or

in other words, 4>i=\f/(Ai) lor each * —1, • • • , m. Now choose <pi

= x¿, i=\, • ■ ■ , m; then for every set of arbitrary expressions

«Ai. • • • . <t>'m, we get yp(d>{, ■ ■ • , d>'m) =0/ (Ai), i= 1, • • • , m.

Corollary 2. A family of finite algebras of the same species is in-

dependent iff for every finite subfamily Ai, • • • , Am,

Fm(Ai X • • ■ X Am) SÉ Fm(Ai) X ■ ■■ X Fm(An).

Finally, we give a characterization of primal clusters, i.e., inde-

pendent classes of primal algebras. For their significance see Foster's

works.

Theorem 3. A family of pairwise nonisomorphic algebras of the

same species forms a primal cluster iff for every finite subfamily Ai, A2,

■ • • , Am with \Ai\ =o,-, ¿=1, • • • , m,

m m

Fm(Ai X ■ ■ ■ X Am) S a7   X ■ ■ ■ X AaZ  .

Proof. If Ai, ■ ■ ■ , Am is any finite subfamily of the given family,

then by independence, it follows by Theorem 2 that

Fm(Ai X ■ ■ ■ X Am) SÉ Fm(Ai) X ■ ■ ■ X Fm(Am).

By primality of the algebras and Theorem 1, then FmL4iX • ■ • XAm)

SáA?X • ■ ■ XA$.
Conversely, we know from Lemma 1 that Pm(.4iX • • ■ XAm) is

isomorphic with a subalgebra S of PmL4i)X • • ■ XFm(Am). Each

tuple (Pi(<pi), • • • , Em(<j>m))eFm(Ai)X ■ ■ ■ XFm(Am) defines an m-

tuple of functions (fu ■ ■ ■ ,fm)eAÄ~X • • • XA^. Thus by virtue

of the given isomorphism and the finiteness of the algebras, the cor-

respondence (Ei(q>i), • ■ ■ , Pm(#m))—K/i. ' • • , /m) is 1-1 and onto.

By the same argument featured in the proof of Theorem 1, it follows

that Ai is a primal algebra for each i—\, ■ ■ ■ , m. By Corollary 1,

Fm(Ai)=Ai'' for each ¿=1, • • • , m and therefore we finally arrive at

Fm(Ai X ■ • ■ X Am)

m i

SÉ a7   X ■ ■ ■ X AT  Sé Fm(Ai) X    ■ ■ X Fm(Am).
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Independence now follows by virtue of Theorem 2 and hence the

given family is a primal cluster.
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