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In the study of many-valued logics, one is led to consider a
(finitary) algebra (4, 01, - - -, 04), or simply 4, with a finite number
of primitive operations that generate by composition all functions in
A4™ for each m < ». Such algebras are called primal. For example,
the algebra ({0, 1}, /\, ~) of truth-values in 2-valued logic and,
more generally, ({0, ce e, n—l}, min{x, y}, x+1 (mod 7)) in n-
valued Post logics are primal algebras. The truth-values of the
Lukasiewicz-Tarski logics ({0, -++, m—1}, C, N), where Cxy
=max{0, y—x} , Nx=n—1—x, do not form a primal algebra, but if
the 0-ary (constant) operation 1 is admitted, then ({0, - - - , n—1},
C, N, 1) becomes a primal algebra. Note that any primal algebra is
finite, for if it were infinite, then the set of functions would be un-
countable, while the set of generated operations would be countable
at most.

If Oy, - - -, O, are the operations symbols in the language for the
operations 01, - - -, 0, of a fixed species (or similarity type), then by
the absolutely-free algebra (of the given species), (®x, 01, - - -, 0a),
with % generators x1, - - -, Xi, is meant the set of all formal expres-
sions defined inductively as follows:

1% %y, - - -, 5 EPBy;

2°. for each s=1,---, n, if ¢, -+, ¢, € B, then also

Oi(dy, - - -, D) EPs;
with the operations defined by setting

0i(d1, * - 5 Hk) = Oiley, * - -, Bx,).
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Let Eqi(4) = { (¢, ¢') € B X ®s:foreach hEHom ($4, 4), k() =h(¢") } .
From the fact that a homomorphism determines a congruence (rela-
tion) and an intersection of congruences is also a congruence, it fol-
lows that Eq.(4) is a congruence on ®;. The free A-algebra with &
generators X1, - - -, X is then defined as the quotient algebra Fi(A)
=®,/Eqi(4). Following Foster [4] we write ¢=¢'(4) if (¢, ¢')
E€Eq.(4) for some k. It is easy to see that F.(4) is essentially the
algebra of all k-ary (compositional) operations in 4.

Several characterizations of primal algebras are known [1; 4; 6].
We give another one here.

THEOREM 1. An algebra (A, 01, - « -, 0a) ts primal iff
FZ(A) = Aa”

where the cardinal of A is | A| =a < = and A" is the direct product of a*
copies of A.

Proor. Foster [3] proved the necessity part of this theorem by
using his fundamental structure theorem for primal algebras. A proof
independent of this result is easily reproduced.

From perfectly general considerations (see Foreword [2]), it is
well known that Fi(4) is isomorphic with a subalgebra of the direct
power A*’, where |A4|=a, and hence | Fx(4)| <a*’. Now suppose
further 4 is primal and hence finite; then each binary function
fEAA" is represented by an equivalence class of elements ¢ from ;.
Whence a*’=|44’| | Fo(4)| and therefore Fo(4)=24<".

Conversely, suppose Fy(4)=2A%’, where [A| =a < =, Each equiv-
alence class E(¢) in Fy(A4) defines a function f of two variables on 4.
By virtue of the given isomorphism, the correspondence E(¢)—f is
onto and hence each binary function f is represented by a composition
of the fundamental operations. Binary functions on any set generate
by composition all finitary functions (see [5]); whence primality
follows.

COROLLARY 1. An algebra (4, 01, - - + , 0,) 1s primal iff
Fi(A) =2 A%,
where k22 and |A| =a < .

Another notion quite strongly tied up with the notion of primality
is that of independence. A class of algebras of the same species is inde-
pendent iff for every finite number of them A4, - - -, A, and every
set of expressions ¢y, - - -, ¢ there exist another expression ¢ such

that ¢IE‘I/(A1), ey Om EIP(A,”).
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We also give a characterization of this concept in terms of free
algebras.

THEOREM 2. A finite set Ay, - - -, Am of finite algebras of the same
species is independent iff
Fm(Al X e X Am) gFm(Al) X ¢ X Fm(Am)-

Proor. The following lemma will be used in proving the necessity
and sufficiency parts of the theorem and also Theorem 3.

LEMMA 1. The set S={(E:(9), - - -, E,,.(¢)):¢E<I>,,.}, where E(¢)
denotes the equivalence class in F,(A;) containing ¢, forms a subalgebra
of Fu(A) X + + + XFu(An) isomorphic with Fu(A1X - - - XAm).

ProOF OF THE LEMMA. S is clearly a subset of Fn,(4,)X - - -
X Fn(A.); and for any operation o;, which is k.-ary,
0;[(E1(¢1), M) Em(¢l))’ ) (El(¢k.’)) Y Em(¢k.))]
= (0,'(E1(¢1), ] E1(¢k.'))} ] oi(Em(¢l)1 ) Em(d’k,)))
= (El(oi'(d’l’ c ¢k.‘))’ M) E,,.(o.-(dn, ) ¢h)))
= (Ex(¢), - - -, En(9)) € S.

Hence S is a subalgebra of Fn(41) X -+ - XFu(4n).

Consider now the mapping f: Fu(41X - - - XAn)—S defined by
f(E@)=(Ey(@), - - -, En(¢)). This is onto S and also 1-1, since if
f(E(®)) = f(E(¢')), then Ei¢) = Ei(¢") or ¢ = ¢'(4) for each
i=1, - - -, m and hence ¢ =¢'(41X - - - XA,) or E(p)=E(¢’). In
addition,
flod(E(e), - - -, Eltw)] = f[E(oi(@n, - - -, 2]

= (El(oi(¢l’ Tty ¢k;))’ Tty Em(oi(¢1’ ) ¢k‘)))
= (0(Ei(¢1), - * -5 Ex(r), * * + 5 0i(Em($1), * * * 5 Em(dr.)))
= 0;(f(E(¢1), - - -, f(E(¢r)).

Thus we have Fn(4:X - - - XA,)==S.
To continue with the proof of the theorem, let now

(E1(¢l), C Tty Em(¢m)) E Fm(Al) X MR X Fm(Am)-

If Ay, - - -, A, are independent, then corresponding to the expres-
sions ¢y, - - - , ¢ there exists another ¥ such that 1=y (41), « * : ,dm
=y(4.). Hence (Ei(¢1), * * * , En(dm)) =(E:(), - - -, En(¥)). This
implies Fn(A) X + + + XFn(Ax)SS. The other inclusion is obvious
by Lemma 1; whence S=F,(41) X - - XFn(dm), from which the
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result is now clear by Lemma 1.

Conversely, suppose A4, - - -, A, are finite algebras such that
Fo(Ai1 X - - - X Ap) =2 Fpu(Ay) X -+ X Fu(An). By Lemma 1,
S F,(A; X - - - X A,). All algebras are finite and hence
S=Fn(A)X -+ - XFn(A4,). Thus, if there are given ¢y, - - -, ¢n
€, then (Ei(¢y), - - -, En(¢x)) is in S, whence there exists an ex-
pression y such that (Ex(¥), - -+, En(¥)) =(Er($1), - - -, Em(dn)), or
in other words, ¢;=y¢(4;) for each ¢=1, - - -, m. Now choose ¢;
=x; ¢=1,---, m; then for every set of arbitrary expressions
¢1,y cct v¢:m we get‘#((ﬁl,y AR )¢"II)E¢‘D'(A1))1'=11 e, m.

COROLLARY 2. A family of finite algebras of the same species is in-
dependent iff for every finite subfamily Ay, - - -, An,

Fm(Al X - X Am) EF,,,(A[) X - X Fm(Am)-

Finally, we give a characterization of primal clusters, i.e., inde-
pendent classes of primal algebras. For their significance see Foster’s
works.

THEOREM 3. A family of pairwise nonisomorphic algebras of the
same species forms a primal cluster iff for every finite subfamily A, A,

<o, Ay with [Ail =a; 1=1,---,m,
o o
Fm(A1X"'XAm)§A1 x"’XAm-
Proor. If Ay, - - -, A, is any finite subfamily of the given family,

then by independence, it follows by Theorem 2 that
Fm(Al X e X Am) gFm(Al) X cet X Fm(Am)-

By primality of the algebras and Theorem 1, then Fn(41X - - - X4n)
gA'll'{‘x c. . XA;,:.

Conversely, we know from Lemma 1 that F,(41X - -+ XA4u) is
isomorphic with a subalgebra S of F,(4) X -+ XFn(4dn). Each
tuple (Eu(¢1), - * * y En(@m)) EFn(41) X + + - XFn(An) defines an m-
tuple of functions (fi, « « - , fm) CAATX - - - XAA. Thus by virtue
of the given isomorphism and the finiteness of the algebras, the cor-
respondence (Ei(¢1), - -+, En(dn))—(f1, - © -, fm) is 1-1 and onto.
By the same argument featured in the proof of Theorem 1, it follows
that A4; is a primal algebra for each 7=1, - - -, m. By Corollary 1,
Frn(A)=A%¥ for each i=1, - - - , m and therefore we finally arrive at

Fru(41 X -+ - X 4w)

3
am

AT X oo X Am 2 Fn(4) X -+ X Fu(Aw).
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Independence now follows by virtue of Theorem 2 and hence the
given family is a primal cluster.
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