BIBLIOGRAPHY

- 1. L. Fuchs, On subdirect unions. I, Acta Math. Acad. Sci. Hungar. vol. 3 (1952) pp. 103-120.
- 2. R. Remak, Über die Darstellung der endlichen Gruppen als Untergruppen direkter Produkte, J. Reine Angew. Math. vol. 163 (1930) pp. 1-44.

AUBURN UNIVERSITY AND
LOUISIANA POLYTECHNIC INSTITUTE

FREE-ALGEBRAIC CHARACTERIZATIONS OF PRIMAL AND INDEPENDENT ALGEBRAS

F. M. SIOSON

In the study of many-valued logics, one is led to consider a (finitary) algebra (A, o_1, \dots, o_n) , or simply A, with a finite number of primitive operations that generate by composition all functions in A^{A^m} for each $m < \infty$. Such algebras are called *primal*. For example, the algebra $(\{0, 1\}, \land, \sim)$ of truth-values in 2-valued logic and, more generally, $(\{0, \dots, n-1\}, \min\{x, y\}, x+1 \pmod{n})$ in n-valued Post logics are primal algebras. The truth-values of the Łukasiewicz-Tarski logics $(\{0, \dots, n-1\}, C, N)$, where $Cxy = \max\{0, y-x\}, Nx = n-1-x$, do not form a primal algebra, but if the 0-ary (constant) operation 1 is admitted, then $(\{0, \dots, n-1\}, C, N, 1)$ becomes a primal algebra. Note that any primal algebra is finite, for if it were infinite, then the set of functions would be countable at most.

If O_1, \dots, O_n are the operations symbols in the language for the operations o_1, \dots, o_n of a fixed *species* (or similarity type), then by the absolutely-free algebra (of the given species), $(\Phi_k, o_1, \dots, o_n)$, with k generators x_1, \dots, x_k , is meant the set of all formal expressions defined inductively as follows:

- 1°. $x_1, \dots, x_k \in \Phi_k$;
- 2°. for each $i=1, \dots, n$, if $\phi_1, \dots, \phi_k \in \Phi_k$, then also $O_i(\phi_1, \dots, \phi_k) \in \Phi_k$;

with the operations defined by setting

$$o_i(\phi_1, \cdots, \phi_{k_i}) = O_i(\phi_1, \cdots, \phi_{k_i}).$$

Received by the editors April 7, 1960 and, in revised form, May 4 and May 23-1960.

Let $Eq_k(A) = \{ (\phi, \phi') \in \Phi_k \times \Phi_k : \text{for each } h \in \text{Hom}(\Phi_k, A), h(\phi) = h(\phi') \}$. From the fact that a homomorphism determines a congruence (relation) and an intersection of congruences is also a congruence, it follows that $Eq_k(A)$ is a congruence on Φ_k . The free A-algebra with k generators x_1, \dots, x_k is then defined as the quotient algebra $F_k(A) = \Phi_k/Eq_k(A)$. Following Foster [4] we write $\phi \equiv \phi'(A)$ if $(\phi, \phi') \in Eq_k(A)$ for some k. It is easy to see that $F_k(A)$ is essentially the algebra of all k-ary (compositional) operations in A.

Several characterizations of primal algebras are known [1; 4; 6]. We give another one here.

THEOREM 1. An algebra
$$(A, o_1, \dots, o_n)$$
 is primal iff
$$F_2(A) \cong A^{a^2}.$$

where the cardinal of A is $|A| = a < \infty$ and A^{a^2} is the direct product of a^2 copies of A.

PROOF. Foster [3] proved the necessity part of this theorem by using his fundamental structure theorem for primal algebras. A proof independent of this result is easily reproduced.

From perfectly general considerations (see Foreword [2]), it is well known that $F_2(A)$ is isomorphic with a subalgebra of the direct power A^{a^2} , where |A| = a, and hence $|F_2(A)| \le a^{a^2}$. Now suppose further A is primal and hence finite; then each binary function $f \in A^{A^2}$ is represented by an equivalence class of elements ϕ from Φ_2 . Whence $a^{a^2} = |A^{A^2}| \le |F_2(A)|$ and therefore $F_2(A) \cong A^{a^2}$.

Conversely, suppose $F_2(A) \cong A^{a^2}$, where $|A| = a < \infty$. Each equivalence class $E(\phi)$ in $F_2(A)$ defines a function f of two variables on A. By virtue of the given isomorphism, the correspondence $E(\phi) \to f$ is onto and hence each binary function f is represented by a composition of the fundamental operations. Binary functions on any set generate by composition all finitary functions (see [5]); whence primality follows.

COROLLARY 1. An algebra
$$(A, o_1, \dots, o_n)$$
 is primal iff
$$F_k(A) \cong A^{ak},$$

where $k \ge 2$ and $|A| = a < \infty$.

Another notion quite strongly tied up with the notion of primality is that of *independence*. A class of algebras of the same species is *independent* iff for every finite number of them A_1, \dots, A_m and every set of expressions ϕ_1, \dots, ϕ_m there exist another expression ψ such that $\phi_1 \equiv \psi(A_1), \dots, \phi_m \equiv \psi(A_m)$.

We also give a characterization of this concept in terms of free algebras.

THEOREM 2. A finite set A_1, \dots, A_m of finite algebras of the same species is independent iff

$$F_m(A_1 \times \cdots \times A_m) \cong F_m(A_1) \times \cdots \times F_m(A_m).$$

PROOF. The following lemma will be used in proving the necessity and sufficiency parts of the theorem and also Theorem 3.

LEMMA 1. The set $S = \{(E_1(\phi), \dots, E_m(\phi)) : \phi \in \Phi_m\}$, where $E_*(\phi)$ denotes the equivalence class in $F_m(A_*)$ containing ϕ , forms a subalgebra of $F_m(A_1) \times \cdots \times F_m(A_m)$ isomorphic with $F_m(A_1 \times \cdots \times A_m)$.

PROOF OF THE LEMMA. S is clearly a subset of $F_m(A_1) \times \cdots \times F_m(A_m)$; and for any operation o_i , which is k_i -ary,

$$o_{i}[(E_{1}(\phi_{1}), \dots, E_{m}(\phi_{1})), \dots, (E_{1}(\phi_{k_{i}}), \dots, E_{m}(\phi_{k_{i}}))]$$

$$= (o_{i}(E_{1}(\phi_{1}), \dots, E_{1}(\phi_{k_{i}})), \dots, o_{i}(E_{m}(\phi_{1}), \dots, E_{m}(\phi_{k_{i}})))$$

$$= (E_{1}(o_{i}(\phi_{1}, \dots, \phi_{k_{i}})), \dots, E_{m}(o_{i}(\phi_{1}, \dots, \phi_{k_{i}})))$$

$$= (E_{1}(\phi), \dots, E_{m}(\phi)) \in S.$$

Hence S is a subalgebra of $F_m(A_1) \times \cdots \times F_m(A_m)$.

Consider now the mapping $f: F_m(A_1 \times \cdots \times A_m) \to S$ defined by $f(E(\phi)) = (E_1(\phi), \cdots, E_m(\phi))$. This is onto S and also 1-1, since if $f(E(\phi)) = f(E(\phi'))$, then $E_i(\phi) = E_i(\phi')$ or $\phi \equiv \phi'(A_i)$ for each $i=1, \cdots, m$ and hence $\phi \equiv \phi'(A_1 \times \cdots \times A_m)$ or $E(\phi) = E(\phi')$. In addition,

$$f[o_{i}(E(\phi_{1}), \dots, E(\phi_{k_{i}}))] = f[E(o_{i}(\phi_{1}, \dots, \phi_{k_{i}}))]$$

$$= (E_{1}(o_{i}(\phi_{1}, \dots, \phi_{k_{i}})), \dots, E_{m}(o_{i}(\phi_{1}, \dots, \phi_{k_{i}})))$$

$$= (o_{i}(E_{1}(\phi_{1}), \dots, E_{1}(\phi_{k_{i}})), \dots, o_{i}(E_{m}(\phi_{1}), \dots, E_{m}(\phi_{k_{i}})))$$

$$= o_{i}(f(E(\phi_{1})), \dots, f(E(\phi_{k_{i}}))).$$

Thus we have $F_m(A_1 \times \cdots \times A_m) \cong S$.

To continue with the proof of the theorem, let now

$$(E_1(\phi_1), \cdots, E_m(\phi_m)) \in F_m(A_1) \times \cdots \times F_m(A_m).$$

If A_1, \dots, A_m are independent, then corresponding to the expressions ϕ_1, \dots, ϕ_m there exists another ψ such that $\phi_1 \equiv \psi(A_1), \dots, \phi_m \equiv \psi(A_m)$. Hence $(E_1(\phi_1), \dots, E_m(\phi_m)) = (E_1(\psi), \dots, E_m(\psi))$. This implies $F_m(A_1) \times \dots \times F_m(A_m) \subseteq S$. The other inclusion is obvious by Lemma 1; whence $S = F_m(A_1) \times \dots \times F_m(A_m)$, from which the

result is now clear by Lemma 1.

Conversely, suppose A_1, \dots, A_m are finite algebras such that $F_m(A_1 \times \dots \times A_m) \cong F_m(A_1) \times \dots \times F_m(A_m)$. By Lemma 1, $S \cong F_m(A_1 \times \dots \times A_m)$. All algebras are finite and hence $S = F_m(A_1) \times \dots \times F_m(A_m)$. Thus, if there are given $\phi_1, \dots, \phi_m \in \Phi_m$, then $(E_1(\phi_1), \dots, E_m(\phi_m))$ is in S, whence there exists an expression ψ such that $(E_1(\psi), \dots, E_m(\psi)) = (E_1(\phi_1), \dots, E_m(\phi_m))$, or in other words, $\phi_i \equiv \psi(A_i)$ for each $i = 1, \dots, m$. Now choose $\phi_i = x_i, i = 1, \dots, m$; then for every set of arbitrary expressions ϕ_1', \dots, ϕ_m' , we get $\psi(\phi_1', \dots, \phi_m') \equiv \phi_i'(A_i), i = 1, \dots, m$.

COROLLARY 2. A family of finite algebras of the same species is independent iff for every finite subfamily A_1, \dots, A_m ,

$$F_m(A_1 \times \cdots \times A_m) \cong F_m(A_1) \times \cdots \times F_m(A_m).$$

Finally, we give a characterization of *primal clusters*, i.e., independent classes of primal algebras. For their significance see Foster's works.

THEOREM 3. A family of pairwise nonisomorphic algebras of the same species forms a primal cluster iff for every finite subfamily A_1 , A_2 , \cdots , A_m with $|A_i| = a_i$, $i = 1, \cdots$, m,

$$F_m(A_1 \times \cdots \times A_m) \cong A_1^{a_1^m} \times \cdots \times A_m^{a_m^m}$$
.

PROOF. If A_1, \dots, A_m is any finite subfamily of the given family, then by independence, it follows by Theorem 2 that

$$F_m(A_1 \times \cdots \times A_m) \cong F_m(A_1) \times \cdots \times F_m(A_m).$$

By primality of the algebras and Theorem 1, then $F_m(A_1 \times \cdots \times A_m) \cong A_1^{a_1^m} \times \cdots \times A_m^{a_m^m}$.

Conversely, we know from Lemma 1 that $F_m(A_1 \times \cdots \times A_m)$ is isomorphic with a subalgebra S of $F_m(A_1) \times \cdots \times F_m(A_m)$. Each tuple $(E_1(\phi_1), \cdots, E_m(\phi_m)) \in F_m(A_1) \times \cdots \times F_m(A_m)$ defines an m-tuple of functions $(f_1, \cdots, f_m) \in A_1^{A_1^m} \times \cdots \times A_m^{A_m^m}$. Thus by virtue of the given isomorphism and the finiteness of the algebras, the correspondence $(E_1(\phi_1), \cdots, E_m(\phi_m)) \to (f_1, \cdots, f_m)$ is 1-1 and onto. By the same argument featured in the proof of Theorem 1, it follows that A_i is a primal algebra for each $i=1,\cdots,m$. By Corollary 1, $F_m(A_i) \cong A_i^{n_m}$ for each $i=1,\cdots,m$ and therefore we finally arrive at

$$F_m(A_1 \times \cdots \times A_m)$$

$$\cong A_1^{a_1^m} \times \cdots \times A_m^{a_m^i} \cong F_m(A_1) \times \cdots \times F_m(A_m).$$

Independence now follows by virtue of Theorem 2 and hence the given family is a primal cluster.

REFERENCES

- 1. S. V. Ablonskij, Functional constructions in many-valued logics, Trudy Tret'ego Vsesoyuznogo Matematičeskogo s''ezda, Moskva, 1956, Moscow, Izdat. Akad. Nauk SSSR, vol. 2, 1956, pp. 71-73.
- 2. G. Birkhoff, "Foreword," Lattice theory, New York, Amer. Math. Soc. Colloquium Publications, vol. 25, 1948.
- 3. A. L. Foster, On the finiteness of free universal algebras, Proc. Amer. Math. Soc. vol. 7 (1956) pp. 1011-1013.
- 4. ——, The generalized Chinese remainder theorem for universal algebras, Math. Z. vol. 56 (1957) pp. 452-469.
- 5. W. Sierpinski, Sur les fonctions de plusieurs variables, Fund. Math. vol. 33 (1945) pp. 169-173.
- 6. Jerzy Słupecki, Kryterium pelnosci wielowartosciowych systemow logiki zdan (A criterion of the functional completeness of many-valued logics), Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, III, vol. 32 (1939) pp. 102-110.

University of California