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Case (5) and (6) continuous spectrum 0 <X < », point spectrum
-» <X<0,

Case (7) and (8) point spectrum 0<X<», continuous spectrum
-» <X<0,

Case (9) point spectrum Qi < X < Q2, continuous spectrum

X<min[Çi, Q2], X>max[<2i, Q2].
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A METHOD OF APPROXIMATING THE ZEROS OF
FUNCTIONS BY QUADRATIC FORMULAS1

STEPHEN KULIK

1. Introduction. The problem of approximating two zeros of a given

function by solving a quadratic equation was discussed in a number

of papers [l; 2;4; 5; 7]. In this paper we present a general method of

deriving quadratic equations the two roots of which would approxi-

mate two zeros of an analytic function f(z). A function f(z)/g(z, u),

instead of f(z), is considered, where g(z, u) is another appropriately

chosen analytic function. By varying the parameter u, and keeping

the initial approximation to the zeros unchanged, the final approxima-

tions can be improved or another pair of zeros approximated. The

exact values of the zeros are determined as limits of the expressions

approximating them.

2. The general method. Let f(z) and g(z, u) be analytic functions
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within and on the circle C, where f(z) has zeros, simple or multiple.

The function g(z, u) may have zeros in common with/(z). However,

we assume that those zeros of f(z) which we desire to calculate are

simple zeros of f(z)/g(z, u).

Let the expansion of g(z, u)/f(z) into partial fractions be

(i) g/f=TlAf1)/h7 + *i,

where g = g(z, u),f=f(z), hj = z — a¡, A¡ is a polynomial in z — a¡ of a

degree not higher than my—1, my being the multiplicity of the zero

ai\ ^i = 'r'i(z) is analytic within and on C; and the summation is

carried out over all ay.

On   differentiating   (1)    (n — 1)    times   and   multiplying   it   by

(— l)n~l/(n — 1)!, we obtain

(2) Hn=T,Ajn)/h?mi-1 + tn,

where Af again is a polynomial in z — a¡ of a degree not higher than

my-1, uV„ = ( - l)»-Vi,~1)/(« -1) !. and Hn = QJf. The function Qn is

the determinant

(3) Qn =

g f o

g' r f

g(n-i)/(w _ i)i   /(«-!>/(„ - l)! /(»-»/(„ - 2)! • • •/'

It can be evaluated recursively, [3],

Qn - r<3n-i -//"Ö„-2/2! + • • • + (-f)*-*f<"-»Qi/(* - 1)!

(4) + C-/)""1!<*-lW(* - 1) ! » - 3, 4, • • •,

Öo = l,       Qi = g,       Q2 = f'Qi - ff'Qo.

We assume that ai and a2 are the two simple zeros of f(z)/g(z, u)

which we wish to calculate and rewrite (2) in the form

(5) 77n = (Aj/hî + A2/h2)(l + ßn),

where

(6) A. = h\h\( Z' Af/hT^1 + W/Ui*!! + A2h\) ;

the prime on the summation sign means that the terms for j = l, 2,

are to be omitted, and Au A2 stand for Aï*™1'1 and A2+m^~\

Now if w is a fixed number and z is given a numerical value such

that
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| hi |   ^  I h2 I   <  I hj | ,

| Äx |    á   | h21    <   | V — 2 I ,

for any v on C, then

(8) lim /3„ = 0    as    n —» ».

Using (5) we may write the following equations:

j - 3, 4,

(9)

¿i/aî-1 + ^/¿r1 = (i + <*„-i)#„-i,

¿l/AÎ        +   ¿ï/*ï        =   (1  + «„)//„,

¿i/â"     + ^2/Â2     = (1 + an+i)¿7„+i,

and, eliminating Ai/h" 1 and A2/h2 2 between them, obtain

(10) (1 + cin-i)Hn-i - (1 + an)(hi + h2)Hn + (1 + an+1)hihiHn+1 = 0,

where

(11) lim a„ = 0    as   n—-> ».

Equation (10) shows that hi and Ä2 satisfy a quadratic equation.

Therefore, we may write

h2 + ph + q = 0,

(12) tfLi + #ffi + ?#»+i - 0,

Hi + pHn+i + qHl+i = 0,

where

(13) p = - (hi + h),    q = hih2,    and    h) = (1 + ay)/7y,

j — » — 1, », « -f- 1, » + 2.

Equating the determinant of (12) to zero, we get the following

equation which is satisfied by hi and hi:

(14)

A2        Â 1

Hn-l

Hn

0.

(15)

Hn Hn+1

Hn+l      Hn+2

The equation approximating hi and h2 may now be written,

h2        h 1

ffn-l      Hn Hn+i

Hn Hn+l      Hn+i

= 0,
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or

(16)

h2       fh       P

Qn-l       Qn Qn+1

Qn Qn+1       Qn+2

=   0.

Note that we have not introduced a separate symbol for the ap-

proximating value of h.

From (14) also follows

(17) aha2 = z-f lim Bn ± (Bn - \AnA,l_tfl2/2An,

where

(18) An  =   QnQn+2 Qn+l, B,¡  —   Qn-lQn+2 ~  QnQn+1.

The quadratic equation (16) is satisfied exactly by the zeros of a

quadratic polynomial in z if g(z, u) is a polynomial in z. If the degree

of g(z, u) is k, it is satisfied starting with the lowest Q„-i = Qk. This

follows from the fact that (16) would coincide with (14) starting with

n— l = k.
We consider in more detail (16) when g(z, u) = 1. In this case the

determinant (3) is reduced to a determinant of order n—l. We denote

it by Pn-i and write the recursive relation between Pn and the lower

determinants.

(19)     Pn=f'Pn-l-ff"Pn-2/2l +   •   •   •   +  (-l)-y<»>.Po/* Po=  1.

The equation corresponding to (16), with n increased by one, we

rewrite in the form

(20)
Pn Pn—1

Fn+2      Pn+l

Pn+1      Pn

Pn+2      Pn+l

There is no difficulty in showing that

Pn Pn-l

(21)

and

(22)

where

P»

Pn+2

Pn-l

Pn+l

n+1

fnLn

fh +

fnKn

Pn

Pn+l

Pn-l

Pn
f2 = 0.

+1) Ln+1 = f'Kn - fMn
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(23)   *» =

(24)  M,=

(25)    im"

/"/2!

/'"/3I /"/2!

/

/<»+!)/(„ + i)!   fW/nl   /(•.-»/(„ _ l)l

/'"/3!

/iv/4! /"/2!

/

/'

/("+»)/(» + 2)!   /<»>/»!   /<»-»/(» - 1)!

/'

/'"/31

/'V4!

/

/"/21

/'"/3!

0

/'

/"/2!

/"/2!

/"/2!

0

/

/'

/"/21«»+»/(„ + 2)!   ß»»)/(„ + 1)1   /(")/„;   /<»-»/(« -1)1

With these notations (20) can now be presented in a shorter form,

(26) Kn+ih* - Ln+1h + fKn = 0, or

(27) Kn+lW + (fMn - f'Kn)h + fKn - 0.

Further simplifications of (26) or (27) are possible in some particu-

lar cases. As an illustration, we take the cubic trinomial z3+pz+q.

For 3 = 0, f=q, f'=p, f"/2\ = 0, f"/$\-l, /'"> = 0, « = 4, 5, • • • ,
and it may be seen at once that

(28) Kn  =   -  pKn-2 +  qKn-Z

and

(29) Ln+i = - Kn+2.

Thus, the two zeros of z3+pz+q which are smaller in absolute

value can be approximated by solving

(30) Kn+ih* + Kn+2h + qKn = 0.

The function Kn can be evaluated recursively by using (28) or by

solving (28) for Kn in terms of p and q (see [ó]). The solution for A „is:

(31)

(32)

Kn = (-PY [l + ¿ (-1)* (' u *) A*] for n

r = n/2,        m = [n/6],        X = q2/p3;

m / r _  £ \

Kn= (-py-'gT, (-!)*(,,.  ,,?       for »odd,
fc_o \2k + 1/

r - (» - l)/2,       »=[(*- 2)/6],       A = ffVí*.

even;
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The first few values of Kn are

Ko = 1, Ki = 0, K2 = - p, K3 = q, K< = p2, K6 = - 2pq,

K6=  -p* + q2, K7 = 3p% Ks = p*- 3pq2, Ko = - 4p3q + q\

Kio = - p* + 6p2q2, Ku = 5p*q - Apq\ Ku = p« - I0p3q2 + q\

We will be using another simple case in which (16) is satisfied

exactly by the zeros of a quadratic polynomial, namely, g(z, u)

=f'(z). Using the notation Dn for Qn the recursive formula is

Dn =f'Dn-i -ff"Dn-2/2\ + • • • + (-fY~2f^Wi/(n - l)\

(33) + (-/)«-'/«£>„/(» - 1) !, n = 3, 4, ■ • • ,

Do=l,       £>i=/',        D2=f'2-ff".

3. The use of the parameter. The usefulness of introducing a

parameter into quadratic formulas will now be illustrated.

Let

(34) q(z, U)-(U- zyf(z),

where k is a positive integer and u an arbitrary number not equal to

z, ai, or a2. The zeros ai and a2 may be simple or multiple. By apply-

ing (5) we get

(35) Hn,k = (mid/hi + m2e2/h2)(l + ßn,k),

where hi = z—ai, h2 — z — a2, as before; ei = u— ai, e2 = u — a2; mi and m2

are the multiplicities of ai and a2 respectively; Hn,k = Hn,k(z, u),

ßn,k = ßn,k(z, U).

Now if we assume that n — k = constant and z and u are given such

numerical values that

(36) | ei/hi | ^ | e2/hi | > | ej/hj \, j = 3, 4, • • • ,

and

| ei/hi ¡   ^  | e2/h21   >   | (u — v)/(z — v) \ ,

for any v on C, then lim ßn,k = 0 as w—> ».

Let n — k = 0; then we can write the approximate equations

mi(ei/hi)n-1 + m2(e2/h2y-x = Hn-i.n-u

(31) mi(ei/hi)"    + m2(e2/h2y    = Hn,n,

mi(ex/h/)^ + m2(e2/h2y+1 = Hn+i,n+i
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and, eliminating mi(ei/hi)n~1 and m2(e2/h2)n~l, we obtain

(38) JE7„_i,„_i + pHn.n + qHn+i.n+i = 0,

where p = — (hi/ei+h2/e2), q = hih2/eie2.

We write now the equations

(h/eY + ph/e + 3 = 0,

(39) Hn-l,n-l  +  pHn,n  +  qHn+l,n+l   =  0,

77re, n + pHn+l.n+1 +  qHn+2,n+2   =   0

and, eliminating p and q between them, obtain the desired quadratic

equation

(h/eY       h/e 1

(40)

or

(41)

tin— l,n— 1      "71.71

H„ H71+1,71+1

77re+ilT1+l

7£n+2,7>+2

= 0

(z - aY/(u - aY    (z - a)/(u - a)f        p

Qn-l,n-l Qn,n Çn+l,n+l

Qn, n Qn+l,n+l Qn+2,n+2

=  0.

Another pair of simple quadratic equations will be obtained by

starting with

(42)

and

(43)

namely,

(44)

k      n—1 k  .   n—1

mißi/hi    + m-ici/hi     = Hn-\M
k .   n k     n

ntiei/hi     + m2e2/h2     = Hn,h,

miei/hi    + m2e2/h2    = H„+i,k

*-l.,n k-1/,n Tj

miei   /hi + m2e2   /h2 = Hn,k-i,

rrtiei   /hi + m2e2   /h2 = Hn¿,

k+1 //"   i k+1 /;"        tj
mid   /hi + m2e2   /h2 = H„,k+i,

(z-aY    (z-a)f P

Qn-l,k Qn.k Qn+l,k =  0

Qn.k Qn+l,k Qn+2,k

and
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(45)

1 (u - a)f   (u - a)2/2

Qn,k-\ Qn.k Qn,k+l

Qn,k Qn ,k+l Qn,k+2

=  0.

The function Qn,k = Qn,k(z, u) may be evaluated by (3) or (4). How-

ever, it is more practical to use its expression in terms of D¡ (see [3]),

(46) Qn.k   =   Z (     .    ) O - *)*-?'P»-l-,-,
3-0 \J  /

which can be derived from (3) or (4) or in some other way.

If g(z, u) = (u—z)k, then

(47) Qn.k=Tl( .)(u- z)*-'P._w
3=0 \ J  I

and the equations similar to (40), (43) and (44) can be derived in the

same way.

The selection of the parameter u is not very difficult in many prac-

tical cases; however, it is a complicated problem in the general case.

For an illustration we again take the cubic trinomial z3-t-pz+q.

If its two zeros are imaginary, they are larger in absolute value than

the real one when p>0. Therefore, they cannot be calculated by (30),

as in the previous illustration, but they can be calculated by (40),

(43), or (44) with 3 = 0, as before, and u= —q/p. It is a simple matter

to show that the inequalities (36) are satisfied and the coefficients of

the corresponding quadratic equations are expressible in terms of p

and q.
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