
THE CIRCUMFERENCE OF A CONVEX POLYGON

f. spitzer and h. widom1

In this note we combine a convexity theorem due to Cauchy with a

combinatorial identity discovered by M. Kac.

Cauchy's theorem [l] concerns the length L of the circumference

of a compact convex set A in the plane. Let D(d) denote the projec-

tion of A on a line with direction 6, 0^0<x, or, if z = x-\-iy

(1) D(6) = max (x cos 6 + y sin 6) — min (x cos 0 + y sin 0).

Then

(2) L =  f  D(6)dd.
Jo

M. Kac, in [2], considered a vector x=(xi, x2, • • • , xn) with real

components. For each permutation

(.di cr2 ■ ■ • &n)

he defined the vectors

X(<r) \Xo\, Xaz, , Xa„),

and their partial sums

Jo(o-)   =  0, Jfc(<T)   =.,*#!+ *$r, +   ••" + *»*» *  =   1, 2,   ■   •   • , «.

His result may be stated in the form

(3) Z      max sk(<r) —   rnin  sk(ff)    = Z Z T" I ̂ W I
„    L OStg» Ogtán J »    fc=.l    «

where the <r-summation extends over the group of all permutations of

«-objects.

We shall consider a vector z = (zi, z2, ■ • ■ , z„) with complex com-

ponents. As above we let

z(o)   =   (Zay,  Z„it   ■   ■   ■   ,  Zan),

so(a) = 0,       sk(cr) = z„, + z,2 + ■ • • + z„k,       k = 1,2, ■ ■ ■ , n.
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We define the set A (a) as the smallest convex set (polygon) contain-

ing all the points Sa(<r), Si(cr), • • • , sn(a), and L(a) as the length of

the circumference of A (a). We shall obtain the following generaliza-;

tion of equation (3).

Theorem 1.

(4) E L(a) = 2 E Ê Y I Sk^ I •
a a     A=l     7v

Here the summation again extends over all permutations, and (4)

is equivalent to (3) when all z* are real. When the zk are not real we

write

zk = xk + iyk,     z„k = xJk + iy„k,

tk(ô) = Xk cos 6 + yk sin 0, 0 g 0 < x,

Uo(0, a) = 0,      uk(d, a) = t,t(B) + ■ ■ ■ + t„k(d),      k = 1, 2, • • • , n.

Let D(6, a) be the projection of .4(o-) on a line with direction 0.

Since ^4(o") is the convex hull of its extreme points we have from (1)

D(6, o) =   max uk(d, o) —   min  Uk(B, o).
OitSn Ogiá/i

By equation (2)

L((t) =    I        max Uk(d, a) — min uk(8, c)     dd.
Jo    L uSfcg» OStgTi J

By equation (3)

E¿W = HÍl^r r\uk(6,o-)\de.
o a      k=\     K    J 0

But

| uk(8, a) | dd = 2   j E x.t}   + 1 E y.\ Sk(<r)

Hence (4) is proved.

As an application we derive a result of probabilistic interest. Let

Zi, Z2, ■ ■ ■ denote a sequence of identically distributed independent

complex valued random variables. Thus the distribution of each Zk

is the same planar Lebesgue-Stieltjes measure and their joint dis-

tributions are given by the obvious product measure. We define their

partial sums as the random variables
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So = 0, Sn = Zi + Z2 +-h Zn, Mal.

Finally, let L„ be defined as the length of the circumference of the

smallest convex set containing So, Si, ■ ■ ■ , S„. If "E" denotes expec-

tation with respect to the product measure, we have

Theorem 2.

(5) E(Ln) = 2¿-E\Sk\.
k-i  k

The proof is based on two observations. First, Ln is a continuous

function of Si, S2, ■ ■ ■ , Sn, so that it is a random variable. Secondly,

if we define the random variables Zn, Sk(ff), L„(a) as was done in the

deterministic case, it follows from the invariance of the product meas-

ure under permutations a that the expectations E \ Sn(a) | and E(Ln(a))

are independent of a. This proves the theorem and also shows that

either both sides in (5) are finite or neither. Of course they are finite

if and only if jE|Zi| < oo.

Finally, we consider two situations where the asymptotic behavior

of E(Ln) is of some interest.

(a) Let Zi, Z2, ■ • • be identically distributed and independent

with

Zk = Xk + iYk,       E(Xk) = E(Yk) = 0,

E(xl) = a' < «>, E(YÙ =» b* < »,       E(XkYk) = pab.

Then «-1,2(Zi+ • ■ • -\-Zn) has a bivariate normal limiting distribu-

tion and its absolute value may be shown to be uniformly integrable

in n, so that

lim n~ll2E\ Zi+ ■ ■ ■ + Zn\
n—»»

= (2tt)-1/2 f   [a2 sin2 8 + b2 cos2 6 + 2abp sin 6 cos 6]l'2dd = c.
J o

It follows from Theorem 2 that

(6) lim n-"2E(Ln) = 4c.
n—»oo

(b) Here we let Xi, X2, ■ ■ • be a sequence of identically dis-

tributed independent random variables with

E(Xk) = ß,        E[(Xk - n)2] = cr2 < oo.

We define the complex valued random variables
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Zk = Xk + t

and their partial sums

So = 0,     Sn = Xi + • • • + Xn + ni, n = 1, 2, • • • .

The law of large numbers asserts that n~1Sn—>p+i with probability

one. Geometrically this means that the polygonal path consisting of

the points 50, Si, ■ ■ • does not deviate too far from the straight line

through 0 and p+i. We shall denote by Ln the circumference of the

smallest convex set containing the points So, Su • ■ ■ , 5„, and quite

naturally, study the excess of Ln over its smallest possible value,

which is 2n(\+p2Y'2.

Theorem 2 yields

— E(Ln) -n(l+ß2Y>2

r l/Xi + X2 +=   T.E UXi + X2+ ■ ■ ■ + Xk\2        ) "2 "I

Using the second order Taylor expansion of (i2-4-1)1/2 about t = p, it

is quite simple to show that, as k—> oo,

i r/xi+ ■ ■ - + xk-ß\n    1 a2~ - (1+,■)-"£ [(—¡—) J - J (1+»■)-'■ J ■

It follows that

(7) lim (log n)-l[E(Ln) - 2n(l + m2)1'2] - <r2(l + m2)"8'2.
n—»oo

References

1. H. G. Eggleston, Convexity, Cambridge, University Press, 1958.

2. M. Kac, Toeplitz matrices, translation kernels, and a related problem in probability

theory, Duke Math. J. vol. 21 (1954) pp. 501-509.

University of Minnesota and

Cornell University


