CONTINUOUS IMAGES OF BOREL SETS
MAURICE SION

1. Introduction. It is well known that in a complete separable
metric space every Borel set is the one-to-one continuous image of a
Gs in some other such space and that the countable-to-one continuous
image of a Borel set is Borel.

In a general topological space, if K denotes the family of compact
sets, G. Choquet [1] has pointed out that the proper families to con-
sider in this context are Borelian K instead of Borel K and K,; instead
. of G; (see §2 for definitions). Let a space have property I if it is Haus-
dorff and the difference of two compact sets is a K,. It has been shown
by Choquet [1] that if ¥ has property I then every Borelian K set in
Y is the one-to-one continuous image of a K, in some compact Haus-
dorff X. On the other hand, in a previous paper [2] we proved that if
X has property I then the countable-to-one continuous image of a
K, in X to a compact Hausdorff space Y is Borelian K in V.

In this paper we complete the picture. We first show that the
difference of two compact sets is a K, iff it is analytic and conclude
that a space has property 1 iff it is Hausdorff and Borel K =Borelian
K, thereby answering a question raised by Choquet [1, p. 139]. We
then prove that if X has property I then every Borel K set in X is
the one-to-one continuous image of a K, in some Y, where Y also
has property I. Making use of our previous result, we conclude that
the countable-to-one continuous image of a Borel K set in X to a
compact Hausdorff space Y is Borelian K and it too has property I.

We are unable to determine whether the condition that X have
property I can be eliminated from the hypotheses, i.e., whether in any
compact Hausdorff space X, every Borelian K set is the one-to-one
continuous image of a Kq in some other compact Hausdorff space
and whether the countable-to-one (or even one-to-one) image of a
Borelian K (or even a K,;) set in X into a compact Hausdorff space
is also Borelian K.

2. Notation and basic definitions.

2.1. w denotes the set of all non-negative integers.

2.2. K(X) is the family of all compact sets in X.

2.3. K(X)={A:A=VU,e, B; for some sequence B with B;€K(X)
for i€w}.

24. K4(X)= {A : A =N;e, B; for some sequence B with B;€ K,(X)
for iCw}.
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2.5. Borel K(X) is the smallest family H such that K(X) CH and
if A;€H, for i1€Ew, then U;c, A;EH and A,—A,EH.

2.6. Borelian K(X) is the smallest family H such that K(X) CH
and if A;€H, for i€w, then U;e, A;€H and Ny, 4,.€H.

2.7. A is analytic in X iff 4 is the continuous image of a K,;(X’)
for some Hausdorff space X’.

2.8. X has property I iff X is Hausdorff and, for every 4 and B
in K(X), A—BEK,(X).

2.9. X has a countable compact base iff X is Hausdorff and there
exists a sequence C with C;€E K(X), for i€w, such that if 4 is open in
X and x&E€ A4 then, for some 1€w, x&C;CA.

2.10. J]:co Y: denotes the cartesian product of the ¥;, for i€uw.

2.11. The union topology for U;c, ¥, where YN\ Y;=0 for 5],
is the topology in which 4 is open iff 4 =U;c, a; where a; is open in
Y, for i€w.

3. Property I and countable compact bases. In this section, we
study conditions under which a set has property I or a countable
compact base. The main results are Theorems 3.1, 3.3, 3.5. The other
results are needed in the next section.

3.1. THEOREM. Let X be Hausdorff, A and B in K(X). Then A —B
is analytic in X iff A—BEK(X).

Proor. If A —BEK,(X) then clearly 4 — B is analytic in X. Sup-
pose now that A — B is analytic in X. Then by Theorem 2.3 in [3],
A —Bis Lindeldf in X, i.e., any open covering of A —B can be reduced
to a countable subcovering. Let

G = {B:Bis open in X and B CB},
F = {a: a = X — closure 8 for some g & G}.
Since X is Hausdorff, F is an open covering of X —B and hence a

countable subfamily F’ covers 4 —B. Let G’ be a countable subfamily
of G such that

F = {a:a = X — closure 8 for someﬂGG’}
and let
H={y:y= A — B for some 8 € G'};

then H is a countable family of compact sets whose union is A — B so
that A —BEK(X).

3.2. LEMMA. Borelian K(X) CBorel K(X).
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3.3. THEOREM. X has property 1. iff X is Hausdorff and Borelian
K(X)=Borel K(X).

PRroOF. Suppose X has property 1. Let H be a maximal family such
that K(X) CH and if 4 and B are in H then 4 and 4 — B are Borelian
K(X). Then we easily check that H is closed under countable unions
and intersections so that H=Borelian K(X). Thus, if 4 and B are
Borelian K(X) then 4 —B is also Borelian K(X). Therefore Borel
K(X) CBorelian K(X) and in view of 3.2, Borel K(X)=Borelian
K(X).

Next, suppose X is Hausdorff and Borelian K(X) =Borel K(X). If
A and B are in K(X) then 4 —B is Borelian K(X) and hence (see
e.g. [1, p. 142]) A—B is analytic in X. Therefore, by 3.1, A—B
EK.(X).

3.4. LEMMA. X has property 1 iff X is Hausdorff and for every
AEK(X) and B open in X we have ANBE K (X).

3.5. THEOREM. If Y has a countable compact base and X has prop-
erty 1 then X X Y has property 1.

Proor. Let C be a sequence of compact sets in ¥ such that if U
is open in Y and y& U then, for some 1€w, y& C; CU. Suppose 4 is
compact and B is open in X X Y. Let, for each i€Cw,

B: = {x: {«} X C;C B}.
Then the B; are open in X. Moreover,
B=U(g:XC)

1€w
for, if (x, ) €B then, for some 1€w,
y € C: C {z: (x,2) € B}

and hence xEf; and (x, y) €EB8:X C;. Let a be the projection of 4 onto
X. Then a is compact in X and aMNB;EK,(X) and hence

(@M B) XC;EKAX X T).
Since

ANB=UANB:XC)) =UAN({(aNBy) XC))

1€w {€w
we see that ANBE&K,(X X V). Therefore X X Y has property I.

3.5a. CoRrOLLARY. If Y is a melric space and X has property 1 then
X XY has property 1.
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Proor. If AEK(XXY), let B be the projection of 4 onto Y.
Then B is a compact metric space and hence has a countable compact
base and 4 CX X B so that we may apply 3.5.

3.6. THEOREM. If X has property 1, CEK (X)), f is continuous on
C, and f(C) is Hausdorff then f(C) has property 1.

Proor. Let A be compact and B open in f(C). Then f~1(4) is
closed in C and hence f~(4) €K (X). Since f~1(B) is open in C and
X has property I, we conclude

(4N B) = f71(4) N fY(B) € Kau(X).

Thus, ANB is the continuous image of a K(X), i.e., ANB is ana-
lytic in f(C), and hence, by 3.1, ANBEK,(f(C)).

3.7. THEOREM. Let f be continuous and one-to-one on C and f(C) have
property 1. Then C has property 1.

Proor. Clearly C must be Hausdorff. If A and B are compact in C,
then f(4) and f(B) are compact in f(C) and hence f(4)—f(B)
EK,(f(C)). Since fis one-to-one, we have

A — B = ANYf(4) — 1(B)) € K.(C).

3.8. LEMMA. If, for each i€w, Y; is compact and has a countable
compact base, then H;eu Y; is compact and has a countable compact base
in the product topology.

3.9. LEMMA. If, for each i€w, Y; is compact and has a countable
compact base and YN\ Y;=0 for i#=j then Use, Y is locally compact and
has a countable compact base in the union topology.

3.10. LeMMA. If Y is locally compact and has a countable compact
base then its one point compactification has a countable compact base.

4. Continuous images of Borel sets. In this section we study one-
to-one projections of K,; sets and continuous countable-to-one images
of Borel sets. The main results are Theorems 4.6 and 4.7.

4.1. LEMMA. If, for each i€w, Y; is compact and A; is the one-to-one
projection of a K (X X Y;) onto X then Nic, A is the one-to-one projec-
tion of a

Ka{x x]I Y.-) onto X.

f€w

Proor. For each 1€w, let C;EK (X X ¥;) and 4 be the one-to-one
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projection of C; onto X. For x&A4;, let hi(x) be the y such that
(x, ) ECi, Z=]]:co ¥, and

Fi={(x,9):2E 4;,y € Z and y; = hi(x)}.

Then F; is homeomorphic to C:X [[jcw—tip Y; so that F.€
K3 (X X2Z). Let
D=nNF.
t€w

Then DEK (X XZ) and (x, y) ED iff x&Nie, 4; and y;=h;(x) for
all i€w. Thus, if (x, ¥) €D and (x, ') ED then y;=h;(x) =y! for all
1€w so that y=9' and N;e, 4; is the one-to-one projection of D onto
X.

4.2. LEMMA. If, for each 1€Ew, A; is the one-to-one projection of a
K,a(XX Y,) onto X, A,f\A,-=0= Y.f\Y; for 1#j, and Y’=U.;e¢ Y;
with the union topology then Uic, A; is the one-to-one projection of a
K (XXY') onto X.

PRrOOF. Let C;EK (X X V), 4; be the one-to-one projection of C;
onto X, D=U;e, C;. Then U;e, 4; is the one-to-one projection of D.
Moreover, D is a K,3(X X ¥’), for if

C:; = N B(i,7)  with B(,5) € K,(X X Y))
JjEw
then for 15#4', B(3, j)NB(', k) =0 for all jEw, kEw and hence
D=y nBGj =n UBG

t€w jEw €w $€EW
and _
U (B.'_j) (= K,(X X Y').
i€w
4.3. DEFINITION. 4 is a special set of uniqueness in X iff there exist

Y and C such that Y is compact and has a countable compact base
and CEK,4(X X Y) and A is the one-to-one projection of C onto X.

4.4. THEOREM. If for each iCw, A; is a special set of uniqueness in
X then Nicw A is a special set of uniqueness in X and if A;NA;=0 for
17] then Uie, A; is a special set of uniqueness in X.

PRrOOF. N;e, 4; is a special set of uniqueness in X in view of 4.1 and
3.8. To see that if 4,N\A4;=0 for 1] then U;c; 4, is a special set of
uniqueness in X, let 4; be the one-to-one projection of C; where
Ci€EK4(XXY,) and Y; is compact and has a countable compact
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base. We may assume that YN\ Y;=0 for :#j for otherwise we may
replace Y; by Y;X {z} Let V' =U;c, Y; with the union topology and
Z be the one-point compactification of ¥’. Then by Lemmas 3.9 and
3.10, Z is compact and has a countable compact base. Moreover
Ky(XXY')CKoa(XXZ). Hence by 4.2, Uieu 4, is a special set of
uniqueness in X.

4.5. THEOREM. If X has property 1 and A& Borel K(X) then A is
a special set of uniqueness in X.

Proor. If A€ K,(X) then clearly 4 is a special set of uniqueness
in X since we can take ¥'={0} and 4 is the projection of 4 X {0}
EKs(XXY). Let H be a maximal family such that K(X) CH and
if A and B are in H then 4 and A — B are special sets of uniqueness
in X. We shall show that H is closed under countable unions and
difference of two sets so that Borel K(X) CH. Let A;€H, for iCw,
and

S = {A: A is a special set of uniqueness in X}.

We now check, using 4.4:
(i) Ay—4,€H, for, Ay—A,ES and for any BEH,

(Ao— 4) —B=(4o— A)N(4e—B)ES
and
B—(4do— A) =B —-A4) U (BN AN 4y €S}
(ii) A\JA,EH and hence
CJGA;EH forn € w
for,
AV A, =4, J (4, — 4o) ES
and for any BEH,
(40\J 4y) = B = (4o — B)\Y (41— B)N (41 — 40) €,
B—(40JA4)=(B—-A4)N(B—- A)ES;
(iii) Uiew 4:€H, for, let

n—1
4 = 4, — U 4.

=0

Then by (i) and (ii), A4 €H and A4 NA{ =0 for n#=k. Hence



1961] CONTINUOUS IMAGES OF BOREL SETS 391

t€w n€w

and for any BEH,
U4d,—B=U (4, — B)ES,

1€w n€w
B—UA.": n(B—A.’)ES.
1€w 1€w

4.6. THEOREM. Let X have property 1. Then A is Borel K(X) iff, for
some BEK,(X), A CB and there exist X', C, f such that X' has prop-
erty I, CEK 4(X"), f is continuous and one-to-one on C and A =f(C).

Proor. If A EBorel K(X) then by 4.5 A is the one-to-one projec-
tion of a K(X X Y) for some Y that is compact and has a countable
compact base. By 3.5, X X Y has property I. Moreover, since X has
property I, by 3.3 Borel K(X)=Borelian K(X) and hence 4 CB for
some BE K (X).

The converse is given by Theorem 6.3 in [2] again with the help
of 3.3.

4.7. THEOREM. If X has property 1, A is Borel K(X), f is continuous
and countable-to-one on A to some Hausdorff space V, and YEK.(Y)
then f(A) is Borelian K(Y) and f(A) has property 1.

Proor. In view of 4.6, f(4) is the continuous countable-to-one
image of a K, (X’) for some X’ that has property 1. Hence by Corol-
lary 6.10in [2], f(4) is Borelian K(Y). By 3.6, f(4) also has property
I.
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