
A NOTE ON ARCS OF FINITE CYCLIC ORDER1

S. B. JACKSON

1. Definitions and statement of theorem. An arc A in the con-

formal plane means the locally topological image of the closed unit

interval, and small letters p, q, etc. will be used to denote points of A

or equivalently corresponding points of the parameter interval. An

arc without double points is called a simple arc. If C is a circle and

pEAC\C is an interior point of A then C is said to support [intersect]

A at p if there is a neighborhood of p on A such that the two half-

neighborhoods determined by p lie in the same component [different

components] of the complement of C.

Arc A is said to have finite cyclic order k if k is the maximum num-

ber of common points of A with any circle.

A circle C is called a general tangent circle to arc A at a point pEA

provided there exist triples of distinct points (r<, r¡, Ri) with se-

quences {r,} and {r¡ } converging on A to p, {Ri} converging to

some point, and such that C = lim C(rit r[, Ri), where C(r{, r[, Ri)

denotes the unique circle through these distinct points.

The definitions and notations above are those of Lane and Scherk

[2]. The purpose of this note is to establish the following result.

Theorem 1.1. If A is a simple arc of finite cyclic order k and C is a

circle meeting A in k points, then (a) C intersects A at any common

interior point, and (b) C is not a general tangent circle to A at any com-

mon point.

It is to be noted that the theorem involves no smoothness assump-

tions on A except as these are implied by the finite cyclic order. It is

well known, however, that the hypothesis implies conformai differ-

entiability at the endpoints and hence at any interior point one-sided

conformai differentiability with respect to both adjoining arcs

[1|2;3].

2. Proof of part (a) of the theorem. Let qn i = i, • • • , k, be the

points of AC\C taken in order on A, and let A' be the subarc of A

with endpoints Oi and qk. Arc A' clearly also has cyclic order k. Let

C be oriented and let ûi and Ct2 denote respectively the directed arcs

OiOi and qkqi of C. Let l, [rs], 7=1, 2, be the number of points of

Received by the editors July 18, 1960.
1 This research was done with partial support of a fellowship from the National

Science Foundation.

364



A NOTE ON ARCS OF FINITE CYCLIC ORDER 365

A(~\&,j where C supports A' and at which A' is locally to the left

[right] of öy, and let i be the number of points of intersection of A'

and C. Since every point of AT\C is an intersection, a point of sup-

port, or an endpoint, it follows that

(2.1) k = li + l2-\-n + r2 + i+2.

Consider the pencil of circles of the first kind with fundamental

points qi and <7¡¿, and let G be a member of this pencil arbitrarily

close to C but such that fti has been displaced to its right and hence

02 to its left. Each of the n right-hand supports on fti is thus replaced

by at least two intersections of A' with G and similarly each of the k

left-hand supports on ß2 is replaced by at least two intersections. Each

of the i intersections in A'C\C is replaced by at least one intersection

in A'(~\Ci and the endpoints are unaltered. Hence the number of

points in AT\& is at least 2ri + 2k+i + 2. By definition of cyclic

order this is at most k, whence from (2.1) it follows that ri+húh+r2.

A similar argument applied to circle G of the pencil displaced from

C in the opposite sense yields the reverse inequality, whence it follows

that

(2.2) h + r2 = ri + l2.

Consider next the pencil of circles of the second kind containing

C and with qi as fundamental point, and let G [G] be a circle of this

pencil arbitrarily close to C but displaced to the left [right] of G

Each of the h+h left-hand supports [ri+r2 right-hand supports] in

AT\C is replaced by at least two intersections in AT\C3 [AT^'Ci].

For definiteness assume A' lies to the left of C at g* so this endpoint

is replaced by at least one intersection in AT\C3. Since qi is unaltered

the number of points in AT\C3 is at least 2li-\-2li+i+2, and since

as before this cannot exceed k it follows by (2.1) that h+h^ri+r2.

A similar argument applied to G shows that ri+r2^h+k+l, the

difference being that the endpoint g* is lost in this displacement.

From these inequalities it follows that either (i) ri+r2 = h+h or

(ii) ri+r2 = li+k+l. But case (ii) is impossible since it would follow

that (ri-H2) + (/i+r2) = 2(/i-H2) + l in which the right-hand side is

clearly odd while by (2.2) the left-hand side is even. It follows that

(2.3) h + h = ri + r2.

Suppose now that AT\C actually contains at least one point of

support, i.e., that not all of fj, r2, h, l2 are zero. Then there is a first

such support q as C is traced from qi and there exists a point BEC

such that B and gi separate q on C from all the other supports. Let
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directed arcs qiB and Bqi of C be denoted by (Bi and (B2 respectively,

and for definiteness assume that A' is to the left of C at g. Then

çG©i but all ri+r2 of the right-hand supports belong to (B2. Consider

the pencil of circles of the first kind with Oi and B as fundamental

points, and let C be a circle of this pencil arbitrarily close to C but

such that (Bi has been displaced to its left and hence (B2 to it right.

The support q is thus replaced by at least two intersections of AT\C'

and the same is true of each of the ri+r2 right-hand supports on G52.

Since qi is unchanged and none of the i intersections is lost, the num-

ber of points in AT\C is at least 2(»v+'fyfi)-H+l. By (2.3) and

(2.1) it follows that 2(ri+r2 + l)+i+l = ri+r2+h+h+i+3 = k + l
>k. This is impossible since A' has cyclic order k. Hence ri = r2

= /i = /2 = 0 and k = i + 2.

If C supports A at one of the endpoints of A', say qk, an arbitrarily

near circle through gi will replace the support at qk by at least two

intersections. Since it still meets A' arbitrarily close to each of its i

intersections, the number of points in CC\A is at least i+3=k+\>k

which is again impossible. Hence C cannot support A at any common

interior point. This establishes part (a) of Theorem 1.1 since A has

finite cyclic order and hence C supports or intersects at any common

interior point.

3. Proof of part (b) of the theorem. In the notation of §1, if

C=lim C(rit ri, Ri) where {r<} and {r{ } converge on A to p and

{Ri} converges, it follows that for any point REC where R^p

C = lim C(r,-, ri, R). For if REC the sequence {i?,¡ can be chosen,

without altering the sequence of circles, so that {Ri} converges to R.

But since Rr^p and {Ri} converges to R, the angle between

C(r(, ri, Ri) and C(rt, r[, R) approaches zero (cf. [2, §3.34]). Hence

any limit circle of C(rn ri, R) contains p and R and is tangent to C,

whence it coincides with C and C=lim C(rit ri, R) as claimed.

As in §2 let qi, ■ ■ ■ , qk be the common points of simple arc A with

circle C. Suppose that at one of these points, say q¡, C is a general

tangent circle to A. By definition there exist sequences {r¿} and {ri }

converging to q, on A and convergent sequence {Ri} so that

C = lim C(rn ri, Ri).

Consider first the case when q¡ is one of the points qi or qk, and let

q denote the other of these points. Taking q as the point R above, it

follows that C=lim Ct>,-, ri, q). By §2 each of the k — 2 points

q2, ■ • ■ , qk-i is an intersection of A and C whence, for large enough

i, Ar\C(rit ri, q) has an intersection arbitrarily close to each of these

k — 2 points. Since, in addition, A(~\C(ri, ri, q) contains the three
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points r¿, r¡, q, it contains at least k-\-l points which is impossible

since A has cyclic order k. Hence C cannot be a general tangent circle

at gi or qk.

Consider next the case when gy is one of the points q2, ■ ■ ■ , qk-i,

and let g be either gi or qk. As before it follows that C = lim C(rit r[, q)

and that, for sufficiently large i, AC\C(ri, r[ , g) has at least one inter-

section arbitrarily close to each of the k — 2 points g2, • • ■ , g*-i, one

of which is gy. Since A(~\C(ri, r[, q) contains at least two points arbi-

trarily near q¡, namely r, and r\, and also contains q, it contains at

least k points. By §2 it follows that all the points are intersections

except perhaps g, which may be an endpoint. Thus r, and r[ are both

intersections. But since C intersects A at gy, then for large enough

i the number of intersections of A with C(ru r[, q) in an arbitrarily

small neighborhood of q, must be odd. Thus there is another common

point of AC\C(ri, r¡, q) near gy and hence at least k + l points in all,

which is a contradiction as before. This completes the proof of the

theorem.

4. Consequences. Two simple consequences of Theorem 1.1 may

be written at once.

Corollary 4.1. If a simple closed curve of finite cyclic order k is

met in k points by a circle C, then C intersects the curve at every common

point and is not a general tangent circle to it at any of them.

This is obtained at once from Theorem 1.1 by considering a subarc

A of the simple closed curve which contains as interior points all the

common points with G

Corollary 4.2. The cyclic order of a simple arc A is the same as that

of the open subarc obtained by deleting the endpoints.

The case of infinite cyclic order is trivial since this cannot be

changed by dropping any finite number of points. If k is the finite

cyclic order of A and circle C meets A in the k points gi, • • • , qk it

follows from part (a) of the theorem that all interior common points

are intersections whence any circle C arbitrarily close to C will inter-

sect A close to each of the k — 2 points g2, • • • , g*_i. If C is chosen to

meet the open arc gig* of A arbitrarily close to gi and to qk it will meet

this open arc k times. It follows that the arc consisting of the interior

points of A has at least cyclic order k. But since the cyclic order

cannot exceed that of A the cyclic order is exactly k, as was to be

shown.

The special case of this result relating to arcs of cyclic order 3 is
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discussed by Lane and Scherk [2, §3.3] in developing the properties

of such arcs.
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