
ON ORDER-CONVERGENCE

E. S. WÖLK1

1. Introduction. Let X be a set partially ordered by a relation ^

and possessing least and greatest elements O and I, respectively. Let

{f(a), aED] be a net on the directed set D with values in X (our

terminology and notation for nets are those of Kelley [4]). A number

of authors have attached various meanings (many of them distinct)

to the statement "/order-converges to the element y." We shall dis-

cuss two of these notions of convergence which, although distinct,

are intimately related. The first, which we shall call "o-convergence,"

is due in essence to Birkhoff [l] and has been studied by Frink [3]

and McShane [5]. The second was introduced by Rennie [6; 7], and

was employed by Ward [8] (using the terminology of filters). Follow-

ing Rennie's notation, we shall call this second type of convergence

"o2-convergence." It is natural to ask the question: in what class of

partially ordered sets are these two notions of convergence equiva-

lent? Although a theorem characterizing such partially ordered sets

would be excessively involved, we shall show that it is possible to

obtain a convenient condition on the partially ordered set X which

is necessary and sufficient for the associated concepts of "lim inf"

(and dually of "lim sup") to be equivalent. (For practical purposes

this might be considered as an approximate solution of the problem.)

Our condition takes a particularly simple form by making use of the

concept of ideal which was introduced by Frink [2]. This result,

which is our main theorem, is obtained as a consequence of a cor-

respondence which we establish between nets and ideals.

2. Preliminaries. We denote set inclusion by Q, reserving C for

proper inclusion. If S is a subset of the partially ordered set X, we

say that 5 is up-directed (down-directed) if and only if every finite

subset of 5 has an upper bound (lower bound) in S. "Directed" will

be used in a general sense to denote either "up-directed" or "down-

directed." For any SQX, we write S* = {xEX\x^a for all aES},

and S+ = {x E X | x á a for all a E S}. For (S*) + we shall write S*+, and

dually.

We shall always consider the domain of a net/ to be an up-directed

partially ordered set. If / is a net on D to X, and ßED, we define

Efiß) = if (a) I « ^ ß} ■ We also define
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Pf = V{[Ef(ß)]+\ßED},

Qf = V{[Ef(ß)]*\ßED}.

We now give the Birkhoff-Frink-McShane definition of o-conver-

gence.

Definition 1. If {/(a), otED} is a net in X, we say that/ o-con-

verges to y (and write y = o-lim /) if and only if there exist subsets J17

and N of X such that

(i) J7 is up-directed and N is down-directed,

(ii) y = l.u.b. M=g.l.b. N,
(iii) for each mEM and nEN, there exists ßED such that

m^f(a) ^ra for all ce^ß.

Remark. A condition equivalent to (iii) is

(iii)' MQPf and NQQf.
It is clear that (iii) implies (iii)'. Conversely, assume that M and N

are sets for which (iii)' holds and let mEM and nEN. Then there

exist 0!iGTJ> and a2ED such that mE [Ef(ai)]+ and «G [Ef(a2)]*. Let

ß be an element of D with ß^au ß^a2. Then Ef(ß)CZEf(ai)r\Ef(at),

and m á/(a) ara for all a S:p\

It should be noted that "/ is o-convergent" does not imply "the

sets Pf and Qs are directed." A simple example to illustrate this is

given below in §4.

The following definition is that of Rennie and Ward.

Definition 2. If / is a net in X, we write y = o2-lim inf / if and only

if y = l.u.b. Pf; and y = 02-lim sup / if and only if y = g.l.b. Q¡. If
l.u.b. P/ = g.l.b. Qf = y, we say that / o2-converges to y (and write

y = o2-lim/).

We also give another characterization of o2-convergence.

Theorem 1. Let {f(a), aED} be a net in X. Then y = o2-lim / if and

only if there exist subsets M and N of X such that

(i) y = l.u.b. J7=g.l.b. N, and
(ii) for each mEM and nEN, there exists ßED such that m á/(«) ^ »

for all a^ß.

Proof. If y = o2-lim/, one merely takes M=P¡, N=Qf, and (i) and

(ii) are satisfied. To prove the converse, suppose that / is a net in X

for which there exist sets M and N satisfying (i) and (ii). Condition

(ii) implies that MQP,, NQQf. Since M*+= {xEX\x^y} and

N+*={xEX\x^y}, we have M*+r\N+*= {y}. But M*+QPf+,
N+*çzQ;*, and hence yEP*+(^Q¿*. But we have QjQPf, Qf^Pf*,
and hence yGÖ/T\Q+*. This implies y = l.u.b. Ç/ = g.l.b. Qf. By the
dual argument we also have y = l.u.b. Pf. Hence y = o2-lim/.
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As an immediate corollary of Theorem 1 we have the following re-

sult.

Corollary. Iff is a net in a partially ordered set X, then y = o-lim /

implies y = o2-lim /.

The equivalence of conditions (iii) and (iii)' in Definition 1 sug-

gests the following natural definitions of "lim inf" and "lim sup" for

o-convergence. Note that these definitions do not coincide with those

of McShane [5, p. 15], which are much more restrictive.

Definition 3. y = o-lim inf/ if and only if yEP* and there exists

an up-directed subset M of P/ with y = l.u.b. M. y = o-lim sup / if and

only if yEQf and there exists a down-directed subset N of Q¡ with

y = g.l.b. N.

Theorem 2. 2// is a net in a partially ordered set X, then

(i) y = o-lim inf / implies y = 02-lim inf / and dually,

(ii) y = o-lim / if and only if y = o-lim inf /= o-lim sup /.

Proof, (i) Let y = o-lim inf/. Let M be up-directed, MçZPf, and

y = l.u.b. M. Then ikPOP}*. Hence xEP* implies x^y. Since yEP*,

we have y = l.u.b. P/.

(ii) y = o-lim/implies y = 02-lim/ (corollary to Theorem 1). Hence

yEP*, yEQf, and the remaining requirements of Definition 3 are

trivially satisfied. The converse is also trivial.

3. Nets and ideals. The following definition is due to Frink [2].

Definition 4. A subset K oí a partially ordered set X is an ideal

(dual ideal) in X if and only if for every finite subset F oí K we have

F*+QK(F+*QK). An ideal (dual ideal) is normal if and only if

K*+ = K (K+* = K).
It is readily verified that the set of all ideals of X, partially ordered

by set inclusion, forms a complete lattice.

The following theorem, which gives information about the struc-

ture of non-normal ideals, will be of some use to us.

Theorem 3. If K is a non-normal ideal in a partially ordered set X,

then

(i) there exists a chain in K with no upper bound in K, or

(ii) K contains an infinite set S of maximal elements such that xEK

implies x^m for some m ES.

Proof. Suppose that (i) does not hold: i.e., suppose that every

chain in K has an upper bound in K. Then by Zorn's lemma K has

a nonempty set S of maximal elements. If xEK, let Z be a maximal
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chain in K which contains x. By our assumption, Z has an upper

bound m in K. Then x = m and m£5 (by maximality of Z). It re-

mains to prove that 5 is infinite. Since we have shown above that

S* = K*, it follows that S*+ = K*+. If S were finite, we would then

have S*+ = K*+QK, since K is an ideal. But this contradicts the

hypothesis that K is non-normal.

Corollary. 7« any partially ordered set, a finite ideal is normal.

We now prove a theorem which sets up a correspondence between

nets and ideals.

Theorem 4. A subset K of a partially ordered set X is an ideal (dual

ideal) if and only if there exists a net g in X such that K = Pg (K = Q,).

Proof. Let {g(a), aED} be a net in X, and let F= {xu ■ ■ ■ , x„}

be a finite subset of P„. Then for each i = 1, • • • , ra, there exists ßiED

such that x¿G [Eg(ßi) ]+. Let ß be an element of D such that ß'eßi for

all ». Then Eg(ß)QF*, and hence F*+Q [E0(ß) ]+QPg. Hence P„ is

an ideal. The obvious dual proof applies to Qg.

To prove the converse we consider two cases. First, let K be an

infinite ideal in X. Let J be the family of all finite subsets of K, and

let ff be partially ordered by set inclusion. For each PGï, let Wf be

an up-directed partially ordered set in 1:1 correspondence with F*,

and containing a least element aj. This partial order on Wf, which

we again denote by i£, of course need not correspond to the order

defined on 7"* as a subset of X. For ae Wf, let the corresponding ele-

ment of F* be denoted by o„. Define D = {(F, a) | PG^ and a£ Wf } ■

We order D "lexicographically" by defining (Pi, cci) <(F2, a2) if and

only if FiEF2, or, when Fi = F2, if «i<a2. This is a partial order with

respect to which D is up-directed. Let g be a net on D to X defined by

g(F, a) =aa. We shall prove that Pg = K. Let (Pi, ai) be any element

of D. Then, since K is infinite, there exists FE$ with FiEF; and

hence £0(Pi, ai) 3£„(P, aF) = F*. Then [Et(Fu ai) ]+CF*+QK. Thus

P„QK. To prove the reverse inclusion, let XoEK and let F be the set

consisting of the single element x0. Then E„(F, ap)= [xGA|*;S:xo}

and hence x0E [Eg(F, tx/OJ+ÇP,. Hence P0 = K.

We assume now that K is a finite ideal, and hence normal, by the

corollary to Theorem 3. Let £ be a set which is in 1:1 correspondence

with K* and which is up-directed by some partial ordering relation

^. For aEE, let aa denote the corresponding element of K*. Let

D— [ (i, a)|i is a positive integer and aEE}. We again make D an

up-directed set by defining (iít ai) <(i2, a2) if and only if ii<i2 or,

when ii = i2, if ai <a2. Let g be a net on D to K* defined by g(i, a) = aa.
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From our construction it is clear that Eg(i, a) =K* for all (i, a) ED,

and hence [E„(i, a)]+ = K*+ = K for all (i, a). Thus we again have

Pa = K.
The following corollary, which gives us a new characterization of

a complete lattice, may be of some incidental interest.

Corollary. A partially ordered set X with elements 0 and I is a

complete lattice if and only if o2-lim inf/ exists for every netf in X.

Proof. It is trivial that lim inf /exists for every net/ in a complete

lattice. To prove the converse, let SQX and let K be the smallest

ideal in X which contains 5. Since K = Pa for some net g in X, it

follows from our hypothesis that y = l.u.b. K exists. Let m be any

element of 5*. Since {ä:|ac^íw} is an ideal containing S, we have

K Q {x I x g m} and hence m 2: y. Then y = l.u.b. 5, and X is a complete

lattice.

For convenience we introduce another definition.

Definition 5. A partially ordered set X has Property A if and only

if whenever K is a non-normal ideal in X with a least upper bound y

in X, there exists MQK such that M is up-directed and y = l.u.b. M.

We now prove our main result. The dual formulatiou may be left

to the reader.

Theorem 5. A partially ordered set X has Property A if and only if

for every net f in X and every yEX, y = o2-lim inf / ¿5 equivalent to

y — o-lim inf /.

Proof. Let X have Property A. By Theorem 2, we need only to

show that if / is a net in X with y = o2-lim inf/, then y = o-lim inf/.

If yEP¡, then trivially P¡ is up-directed and in Definition 3 we may

take M = Pf. Suppose, then, that yEPf- Then it follows that P/ is

a non-normal ideal, since y = l.u.b. P¡ and P*+= {x(E-^|xáy} t¿P¡.

By hypothesis P¡ contains an up-directed subset M with y = l.u.b. M,

and hence y = o-lim inf/.

To prove the converse, suppose that K is a non-normal ideal in X

with y = l.u.b. K, and suppose that K contains no up-directed subset

M with y = l.u.b. M. By Theorem 4, there exists a net g in X with

K = Pg. Then y = 02-lim inf g, but by Definition 3 we cannot have

y = o-lim inf g.

4. Some examples. We first give an example of an o-convergent

net/ for which P/ is not up-directed. Let A and B be infinite ascend-

ing chains ai<a2< • • ■ <an< • • • and oi<62< ■ ■ ■ <o„< • ■ • ,

each of order type of the positive integers. Let a,- and b¡ be incom-
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parable for all i and j. Let F= {y„|re=l, 2, • • • } be another se-

quence of elements with y¿ and yy incomparable for all i and j. Define

y¿>ay if and only if i^j, and also y»>oy if and only if i^j. Adjoin

an element / with x<I for all xEAKJBKJY. Let/ be the sequence

defined by/(re)=y„. Then Pf = AVJB and Qf= {/}. Also,/ is o-con-

vergent to /, since in Definition 1 we may take the set 2V= {/} and

M=A (or M = B). However, Pf is not up-directed.

We now give an example of a partially ordered set X which does

not possess Property A. Let F= {y„} and Z= {z„} be two sequences

of elements. Let y i and yy be incomparable for all i,j, and let z¿ and z¡

be incomparable for all *, j. Define z,<yy if and only if Of. Adjoin

elements 0 and 2" which are upper and lower bounds, respectively, of

Y\JZ. Let X = YKJZ\J{o}\J{l], and let K = ZKJ{0}. The reader
may verify that K is a non-normal ideal in X with / = l.u.b. K. How-

ever, there is no up-directed subset M of K with 2" = l.u.b. 2kf. Further-

more, if we let/(re) = y„, then Pf = K and Qf={l}. Hence the sequence

f is o2-convergent to I, but I¿¿o-lim inf/.
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