
LINE INVOLUTIONS IN S, WHOSE SINGULAR LINES
ALL MEET A TWISTED CURVE

C. R. WYLIE, JR.

Introduction. In §1 we investigate a new series of line involutions1

in a projective space of three dimensions over the field of complex

numbers. These are defined by a simple involutorial transformation

of the points in which a general line meets a nonsingular quadric sur-

face bearing a curve of symbol (2, k — 2). Then in §2 we show that

any line involution with the properties that

(a) It has no complex of invariant lines, and

(b) Its singular lines2 form a complex consisting exclusively of the

lines which meet a twisted curve,

is necessarily of the type discussed in §1. No generalization of these

results to spaces of more than three dimensions has so far been found

possible.

1. Let Q be a nonsingular quadric surface bearing reguli Pi and

R2, and let r be a (2, £ — 2) curve of order k on Q. A general line I

meets Q in two points, Pi and P2, through each of which passes a

unique generator of the regulus, Pi, whose lines are simple secants of

T. On these generators let Pi and P{ be, respectively, the harmonic

conjugates of Pi and P2 with respect to the two points in which the

corresponding generator meets T. The line /' =P{P2 is the image of I.

Clearly, the transformation is involutorial.

We observe first that no line, /, can meet its image except at one

of its intersections with Q. For if it did, the plane of I and I' would

contain two generators of Pi, which is impossible. Moreover, from the

definitive transformation of intercepts on the generators of Pi, it is

clear that the only points of Q at which a line can meets its image are

the points of V. Hence the totality of singular lines is the &th order

complex of lines which meet T.

The invariant lines are the lines of the congruence of secants of V,

since each of these meets Q in two points which are invariant. The

order of this congruence is (k2 — 5k-j-8)/2, since (a2+b2 — a — b)/2
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1 References to other line involutions will be found in [l ], and in the bibliographies
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secants of a curve of symbol (a, b) on a quadric surface pass through

an arbitrary point. The class of the congruence is (k2 — k)/2, since an

arbitrary plane meets r in k points.

Since the complex of singular lines is of order k and since there is

no complex of invariant lines, it follows from the formula [l]

(1) m = 2i + k - 1

that the order of the involution is m = k — 1.

There are various sets of exceptional lines, or lines whose images are

not unique. The most obvious of these is the quadratic complex of

tangents to Q, each line of which is transformed into the entire pencil

of lines tangent to Q at the image of the point of tangency of the

given line. Thus pencils of tangents to Q are transformed into pencils

of tangents. It is interesting that a 1:1 correspondence can be estab-

lished between the lines of two such pencils, so that in a sense a unique

image can actually be assigned to each tangent. For the lines of any

plane, ir, meeting Q in a conic C, are transformed into the congruence

of secants of the curve C into which C is transformed in the point in-

volution on Q. In particular, tangents to C are transformed into tan-

gents to C. Moreover, if m and ir2 are two planes intersecting in a

line /, tangent to Q at a point P, the two free intersections of the image

curves C{ and C{ must coincide at P', the image of P, and at this

point Cl and C2 must have a common tangent /'. Hence, thought of

as a line in a particular plane it, any tangent to Q has a unique image

and moreover this image is the same for all planes through /.

Each generator, X, of R2 is also exceptional, for each is transformed

into the entire congruence of secants of the curve into which that

generator is transformed by the point involution on Q. This curve is

of symbol (1, k — 2) since it meets X, and hence every line of R2, in

the (k — 2) invariant points on X and since it obviously meets every

line of ¿?i in a single point. The congruence of its secants is therefore

of order (¥-Sk + 6)/2 and class (k2-3k + 2)/2.

A final class of exceptional lines is identifiable from the following

considerations: Since no two generators of R2 can intersect, it follows

that their image curves can have no free intersections. In other words,

these curves have only fixed intersections common to them all. Now

the only way in which all curves of the image family of 7?2 can pass

through a fixed point is to have a generator of ¿?i which is not a secant

but a tangent of T, for then any point on such a generator will be

transformed into the point of tangency. Since two curves of symbol

(1, k — 2) on Q intersect in (2k —4) points, it follows that there are

(2& —4) lines of 7?i which are tangent to T. Clearly, any line, /, of
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any bundle having one of these points of tangency, T, as vertex will

be transformed into the entire pencil having the image of the second

intersection of / and Q as vertex and lying in the plane determined by

the image point and the generator of Pi which is tangent to T at T.

A line through two of these points, Pi and T2, will be transformed into

the entire bilinear congruence having the tangents to T at Pi and T2

as directrices.

A conic, C, being a (1, 1) curve on Q, meets the image of any line

of R2, which we have already found to be a (1, k — 2) curve on Q, in

k— 1 points. Hence its image, C, meets any line of R2 in k — 1 points.

Moreover, C obviously meets any line of Pi in a single point. Hence

C is a (1, k — l) curve on Q. Therefore, the congruence of its secants,

that is the image of a general plane field of lines, is of order

(k2 — 3k-{-2)/2 and class (k2 — k)/2. Finally, the image of a general

bundle of lines is a congruence whose order is the order of the con-

gruence of invariant lines, namely (k2 — 5fe+8)/2 and whose class is

the order of the image congruence of a general plane field of lines,

namely (k2-3k->r2)/2.

2. The preceding observations make it clear that there exist line

involutions of all orders greater than 1 with no complex of invariant

lines and with a complex of singular lines consisting exclusively of the

lines which meet a twisted curve T. We now shall show that any in-

volution with these characteristics is necessarily of the type we have

just described.

To do this we must first show that every line which meets T in a

point P meets its image at P. To see this, consider a general pencil of

lines containing a general secant of I\ By (1), the image of this pencil

is a ruled surface of order (k — l) which is met by the plane of the

pencil in a curve, C, of order (k — 1). On C there is a (k —1):1 cor-

respondence in which the (k — l) points cut from C by a general line,

/, of the pencil correspond to the point of intersection of the image of /

and the plane of the pencil. Since C is rational, this correspondence

has k coincidences, each of which implies a line of the pencil which

meets its image. However, since the pencil contains a secant of V it

actually contains only k — 1 singular lines. To avoid this contradiction

it is necessary that C be composite, with the secant of T and a curve

of order i-2 as components. Thus it follows that the secants of T

are all invariant. But if this is the case, then an arbitrary pencil of

lines having a point, P, of V as vertex is transformed into a ruled

surface of order k—l having £ — 1 generators concurrent at P. Since

a ruled surface of order n with n concurrent generators is necessarily
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a cone, it follows finally that every line through a point, P, of V

meets its image at P, as asserted.

Now consider the transformation of the lines of a bundle with ver-

tex, P, on F which is effected by the involution as a whole. From the

preceding remarks, it is clear that such a bundle is transformed into

itself in an involutorial fashion. Moreover, in this involution there

is a cone of invariant lines of order (£ — 1), namely the cone of secants

of r which pass through P. Hence it follows that the involution within

the bundle must be a perspective de Jonquieres involution of order

(k—1) and the invariant locus must have a multiple line of multiplic-

ity either (k — 2) or (k — 3). The first possibility requires that there

be a line through P which meets Y in (k — 1) points; the second re-

quires that there be a line through P which meets Y in k — 2 points.

In each case, lines of the bundles are transformed by involutions

within the pencils they determine with the multiple secant. In the

first case the fixed elements within each pencil are the multiple secant

and the line joining the vertex, P, to the intersection of Y and the

plane of the pencil which does not lie on the multiple secant. In the

second, the fixed elements are the lines which join the vertex, P, to

the two intersections of Y and the plane of the pencil which do not lie

on the multiple secant. The multiple secants, of course, are excep-

tional and in each case are transformed into cones of order (k — 2).

Observations similar to these can be made at each point of Y.

Hence Y must have either a regulus of (k — l)-fold secants or a regulus

of (k — 2)-fold secants. Moreover, if ß = 3, no two of the multiple

secants can intersect. For if such were the case, either the plane of

the two lines would meet Y in more than k points or, alternatively,

the order of the image regulus of the pencil determined by the two

lines would be too high. But if no two lines of the regulus of multiple

secants of Y can intersect, then the regulus must be quadratic, or

in other words, Y must be either a (1, k— 1) or a (2, k — 2) curve on a

nonsingular quadric surface.

We now observe that the case in which Y is a (1, k — l) curve on a

quadric is impossible if the complex of singular lines consists exclu-

sively of the lines which meet Y. For any pencil in a plane containing

a (k— l)-fold secant of Y has an image regulus which meets the plane

of the pencil in (£ — 1) lines, namely the images of the lines of the

pencil which pass through the intersection of Y and the multiple

secant, plus an additional component to account for the intersections

of the images of the general lines of the pencil. However, if there is

no additional complex of singular lines, the order of the image regulus

of a pencil is precisely (k— 1). This contradicts the preceding observa-
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tions, and so, under the assumption of this paper we must reject the

possibility that T is a (1, k—l) curve on a quadric surface.3

Continuing with the case in which T is a (2, k — 2) curve on a quad-

ric Q, we first observe that the second regulus of Q consists precisely

of the lines which join the two free intersections of Y and the planes

through any one of the multiple secants. For each of these lines meets

Q in three points, namely two points on T and one point on one of the

multiple secants.

Now consider an arbitrary line, /, meeting Q in two points, Pi and

P2. If a is the multiple secant of T which passes through P2 and ß is

the simple secant of T which passes through Pi, and if A\, A2, • • • ,

Ak-2 are the points in which a meets T, and if P{ is the image of Pi

on the generator ß, it follows that the image of the line PiAi is PI Ai.

Moreover, the image of P\P[ is this same line. Hence the pencil

(Pi, a) is transformed into a ruled surface of order (k — l) containing

(k — l) concurrent generators. This image surface must therefore be

a cone; and hence every line of the pencil (Pi, a), including I, is

transformed into a line through Pi', the harmonic conjugate of P,

with respect to the two intersections of ß and T. By an identical

argument, with the roles of P2 and Pi interchanged, it follows that the

other intercept of / is similarly transformed on the generator of Pi

which passes through P2. This completes our proof.
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a This possibility leads to another series of involutions which we propose to discuss

in a later paper.


