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For a certain class of algebras, including group-algebras of finite

groups, we shall introduce a permutation in the set of isomorphism-

classes of nonprojective indecomposable modules. This permutation

is in essence given by the loop-space functor [2]. It is to be hoped

that the study of this permutation may give some insight into the

difficult problem of classifying indecomposable representations. In

any case we append here some examples, showing that the orbits

may be either finite or infinite, and that even in simple cases there

may be infinitely many of them.

1. The loop-space operation. We denote by A a finite dimensional

algebra with unit 1 over a field P. By "module" we shall always

mean a finitely generated left A-module on which 1 operates as the

identity. We shall say that A is weak-Frobenius if the classes of injec-

tive and projective A-modules coincide. Quasi-Frobenius algebras,

Frobenius algebras, symmetric algebras and in particular group alge-

bras of finite groups are all weak-Frobenius.

For any module A we denote by [A} the isomorphism class of A.

If B is also a module we set [A] + [B] = [A ®B]. We say that [A ] is

indecomposable when A is; the Krull-Schmidt theorem asserts that

for any A,

[A] = Z [Ai]

with the [Ai] indécomposables determined by [A].

It follows in particular that A ^A°®AP where A" is projective and

A" contains no projective direct summand, and that [A0] and [Ap]

depend only on [A]. We shall write [yl0]= [^4]°.

The loop-space functor is defined by the following process. For

each module A, map a projective by an epimorphism onto A; the

kernel is the loop-space of A, denoted by QA. But if 0—»P—>Ar—Ml—>0

is exact and X is projective then B° depends, up to isomorphism, only

on [A]. For if 0—*B'—->X'—>A—>0 also has these properties then

B®X'~B'®X (Schanuel, cf. [4]). We write Q[A] = [5°].

Since the direct sum of two exact sequences is exact, and the direct
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sam of two projectives is projective we have for any two modules A

and B

(1.1) ai[A] + [B]) = Q[A] + Q[B],

We have also, of course, £2[A]=[o] for X projective, and thus

Q[i4*I-Q[4'].
Dually we may write A =A°*®Ai where A* is injective and A"*

has no injective summands, and define Q*[/l]= [B0*] where 0—>.4

—*Y-^B—>0 is exact and Y is injective.

If A has the property that the classes of injective and projective

modules coincide, and A is a module, then clearly

Ü*Q[A] = ÜÜ*[A] = [A]0.

Thus ß and Í2* are inverse permutations of the set of isomorphism

classes of modules having no projective direct summands. But then

(1.1) implies immediately the following result.

Proposition 1. If A is a weak-Frobenius algebra then Q and fl* are

inverse permutations of the set of isomorphism classes of nonprojective

indecomposable A-modules.

We denote by M(A) the set of isomorphism classes of indecom-

posable A-modules, and by M°(A) the subset of nonprojective ones,

so that MpiA) = Af(A) — M°(A) consists of the projective indécom-

posables. It follows quickly from the Krull-Schmidt theorem that

MpiA) = { [Aei], • • • , [Ae„]} where {ft, • • • , e„} is a maximal set

of orthogonal idempotents [5]. Thus M (A) is finite if and only if

Af°(A) is.

Proposition 2. If A is a weak-Frobenius algebra then M(A) is

finite if and only if (a) each 0,-orbit in AT0(A) is finite, (b) the number of

0,-orbits in M°(A) is finite.

We conclude these generalities by examining the effect of a "change

of algebras." Suppose that Y is also a 7£-algebra, and that <j>: T—*A is

an algebra homomorphism. If A is a A-module we denote by <pf[A ]

the class of A converted into a T-module by the use of <p. We have

clearly

(1.2) ¥([A] + [B]) = 4>f[A] + 4>f[B].

However, </>#[^4] need not be indecomposable even when [A] is.

If further A is projective as a T-module we have for any A-module A

i4f[A"]y = '4f[A]y
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and thus

(1.3) Q.<t>* = <t>*Sl,

this resulting directly from the definition of ß.

2. Examples. We consider three cases. In each one the algebra is

in fact symmetric, and thus a fortiori weak-Frobenius.

For the first, let x be an indeterminate over K and set A = K[x]/(xn)

where »>1. Then M"(A) = { [A]} and M°(A) = { [Vi], • • • , [V»_i]j

where Vq = K[x]/(xq) is regarded as a quotient module of A.2 We

have clearly ß[F„]= [Vn-q].

Next, let x and y be indeterminates over P and set

A = K[x, y]/(xn, yn)

where w> 1. Then, once more, M"(A) = { [A]}. No complete descrip-

tion of M°(A) has been given and indeed it is indicated in [3] that it

may well be difficult to find one. We have however the following

result.

Theorem. If A = K[x, y]/(xn, y") then M°(A) contains both finite

and infinite ü-orbits ; moreover if n > 2 there are infinitely many infinite

orbits.

First, suppose A=K[x, y]/(x", yn), where q<n, regarded as a

quotient of A. We may also write

A = K[x]/(x") ® K[y]/(y"),        A = *[*]/(*«) <8> K\y]/(y*).

Comparing with the first example, we see that tt2[A ] = [A ].

In order to exhibit infinite orbits we let X and Y be projective

resolutions of K over A' = K[x]/(xn) and A" = K[y]/(yn). Then

X®KY is a projective resolution of K over A=A'®.kA". But

(X®KY)®hK=(X®A-K)®K(Y®A,,K) and thus, by the Kunneth

theorem, Tor£(P, P)«P"+1.

Next we consider the modules defined by

Wq = Kai® ■ • ■ ® Kaq® Kbo® ■ ■ ■ ® Kbq,

xai = bi-i,       yai = ¿>¿,       xbi = ybt — 0.

These are all indecomposable (cf. [3, Proposition 5]). Each occurs

in an exact sequence 0—>P5+1—>Wq—»P5—>0. Comparing dimensions

in the exact sequence of Tor's we see that dim Tor^IF,,, P) ^w + 1 — q.

On the other hand it follows immediately from the definition of ß

that Tor£(ß/l, B) «Tor£+1G4, B) for w ̂  1. In particular if the orbit of

2 This is a well-known theorem on nilpotent matrices.
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[^4 ] is finite then Tor^iA, B) is periodic in « for «2:1. This is clearly

not the case for A = Wq; we conclude that each [Wq] belongs to an

infinite orbit.

It remains only to show that when w>2 the [Wq] belong to distinct

orbits. To see this write <p: K[x]/ixn)—>A for the "inclusion" homo-

morphism. We have clearly

¥[Wq]  = q[V2] + [Vi]

where the [F,] are as in the first example. Moreover A is K[x]/ixn)-

free and thus by 1.3,

*«w - P\v'] t[F;1' ,
2] + [Vn-i], k odd,\q[Vn-

which implies the result.

For the last example let -k be a generalized quaternion group and

suppose that K has characteristic 2. If A = Kir then M"iA) = { [A]}.

But since Z2®Z2 is a quotient group of w we have Af (A[x, y]/(x2, y2))

CAÍ (A), and Af°(A) is consequently infinite. On the other hand there

is [l, Chapter XII, p. 7] a projective resolution of K over A which is

periodic of period 4 and thus S24 is the identity on Af°(A). Since each

orbit is finite the class of orbits must of course be infinite.
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