
TRANSFORMATION OF PROBABILITIES

JULIAN H. BLAU1

1. Transformation. Let fibea <r-algebra2 of subsets of X, and (P

the set of all probability measures P on R. Let T transform (P into

itself. For certain sets E£i?, knowledge of P throughout E (i.e., for

all subsets of E belonging to R) determines TP throughout E. The

class of sets having this property will be denoted by ET, or better,

since T will be fixed, by E. Evidently E contains 0, X, and the

complements of atoms. We show that if E is sufficiently large, then

T is a linear combination of the identity and a constant. There are

applications to the theory of learning and to political theory [l;3;4;6].

Theorem 1. (A) // E contains an algebra A whose Bor el extension is

R, and if \R\ >4, then TP = aP + (l-a)P0, where agi and P0£(P.

(B) The converse is true with no restriction on R.

(C) If R is infinite, then a^O.

In the political interpretation, the elements of X are parties (or

political positions). P is the distribution of voters, T is the electoral

mechanism, and TP the distribution of seats in the legislature. If T

is the identity, the mechanism is Proportional Representation. If T

is a constant, the political complexion of the legislature is fixed by

law. It will be seen from Theorem 3 that £££ means that if the

complement — E unites in a coalition, the effect is independent of

whether this occurs before or after the election. | R\ >4 means essen-

tially that there are more than two parties. Part (A) of the theorem

is not true for \R\ =4.

In learning theory, P is a probability distribution of responses,

and TP is a new distribution resulting from a learning experience.

If T is the identity, there is no learning. If T is a constant, this is

one-trial learning.

Bush, Mosteller, and Thompson [4] proved an equivalent theorem

for the case R finite and E=R (Corollary 3 of Theorem 3). Some of

their ideas are used in the proof.

Denote by B the class of sets E such that P(E)—Q(E) implies

TP(E) = TQ(E), for all P, Ç£(P. The importance of B is that for
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2 Borel field. We follow the terminology of [s]. In addition, the Borel extension of

a class M of sets is the smallest ¡r-algebra containing M. This is the same as S{M)

if X is the countable union of sets in M.
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each proper set EEB, there is a function yE mapping [0, l] into it-

self such that TP(E)=yB[P(E)]. We have also 7o(0) =0.

For any class S of subsets of X, let S* denote the class of sets E

for which the complement — EÇzS.

Proposition 1. Ei^E*QB.

Proof. Let E, -EE.E. Let P(E) = Q(E) for two members P, Q of

(P. Define P'E<? as follows. For A ER, let P'(A)=P(A-E)
+A(c)P(E), where cEE and A(x) is the characteristic function of A.

Define Q' similarly. We have P' = Q' on E. Also P = P' and Q = Q' on

-E. Hence TP'=TQ' on E, while TP=TP' and TQ=TQ' on -22.
In particular, the last two equations are true for — E itself, and, tak-

ing complements, also for E. We have TP(E) = TP'(E) = TQ'(E)

= TQ(E), proving E E B.
Since A is an algebra, A = A*. Thus S2EnE*3An.A* = A, and

so B3A

Define the set function u on the class A— \X\ as follows: u(E)

= 7s(0). Using the fact that TP is a measure for each P, and choosing

P so as to vanish on the appropriate sets, it is easy to show that u is a

measure on the semiring A—{X}, and therefore extends uniquely

to a measure a on Ä [5; 7]. Evidently m^I on A—{X}, but it

would be incorrect to infer that u(X) &l.

Proposition 2. Let EC\F = 0\ E, F, E\JF proper sets in B; x, y,

x+yE[0, l]. Then yEuF(x+y)=yE(x)+yF(y).

Proof. Using all the hypotheses, it is easy to show that there is a

probability measure P with P(E)=x and P{F)=y. For this P,

yEuF(x + y) - TP(EVJF) = TP(E) + TP(F) = yE(x) + yF(y).

If E and F are proper sets in A, let E~F denote the statement that

ye{x) — u{E) =yF{x) — u{F) for all xÇz [0, l]. ~ is an equivalence

relation.

Proposition 3. The relation ~ is universal on the proper sets in A.

Proof. (1) Let E(ZB, where C denotes proper inclusion. By

Proposition 2, with F = B — E and y = 0, yB(x)=yE(x)+yB-E(0). Let-

ting x = 0, yB(0)=yE(0)+yB-E(0)- Subtracting, we have E~B.

(2) If Er\F = 0 and EUF^X, then E~E\JF~F by (1).
(3) If E, F are incomparable and EC\F-^Q, then E~Ei~\F~F

by (1).
(4) This leaves only the case F= —E. For the first time, we invoke

the hypothesis \R\ >4, which easily implies \ A\ >4. Hence E or F
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must have a proper subset, say EZ)A. Then E~A by (1) and A~F

by (2).
In view of Proposition 3 and \A\ >2, the equation

y(x) = yE(x) - u(E)       for E G A - JO, X}

defines y(x) uniquely, y maps [0, l] into [ — 1, l].

Proposition 4. y(x) =ax, with agi.

Proof. Let *, y, x+yG [0, 1 ]. Choose E, F so that E, F, EKJF are

proper sets in A, and so that EC\F = Q. Here we have used \R\ >4

for the second and last time. By Proposition 2 and the definitions of

u and 7,

y(x + y) + u{E VJ F) = yEUF(x + y) = yE(x) + yp{y)

= y(x) + u(E) + y(y) + u(F).

Since u is additive, we conclude that y{x-\-y) =y(x) +y(y). A bounded

function of this type is of the stated form. The proof in [2] can be

adapted. Obviously, agi.

Thus TP(E) =aP(E)+u(E) for all E in the semiring A- {X}. If

a^O, then aP+u is a measure on R, equal to TP on A — {X}, and

therefore on R. If agO, then TP — aP is a measure on R, equal to m

on A— {X}, and therefore on R. In either case TP = aP + u on Jf?.

In passing, note that

(1) 1 = TP(X) = a + u{X).

If a=l, then TP = P. If a<l, define Pa by (l-a)P„ = M. The main
assertion (A) of Theorem 1 follows.

Assertion (B) is immediate, taking A = R. For (C) we require a

simple result from set theory. We omit the proof, which is not diffi-

cult.

Lemma. // A is an infinite algebra of subsets of X, then X is the

union of a monotone sequence of sets of A — {X}.

To resume the proof of (C), the infinite cardinality of R implies

the same for A. Then we have u(X) =lim„,0O u(En) for sets E„(E.A

-{X\. But wgl on A-{X}, and therefore w(X)gl. With (1), we

have a è 0.

For applications to special cases, we need the following closure

properties of E, which are of independent interest.

Theorem 2. (A) If E, F£E, and EKJF^X, then E(~\F<EE.
(B)  E is closed with respect to countable union.
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Proof. (A) Let P = Q on EC\F. Without loss of generality, assume

P(E) g (?(£)• Define a new probability measure P' as equal to P on

E (i.e., throughout E), equal to Çon F — E, and arbitrary on X — E — F

except that P'(E)+P'(F-E)+P'(X-E-F) = l. For other sets, P'

is defined by additivity. In verification that the values assigned on

X — E —F are feasible, we observe that this set is not empty and that

P'(E\JF)£Q(EKJF)£l.
Now P = P' on E and Q = P' on F. Hence TP=TP' on E and

TQ=TP' on F. The last two identities are true, therefore, on EC\F.

Hence TP=TQ on EC\F, and EC\FEE.
We remark that when E\JF = X, (A) is false in the strong sense

that given such overlapping incomparable E, F, there exists a T

for which E and F are in Er, but EC\F is not.

(B) Let P = <2 on £ = Ur£„, where £„££. Then P = Q on £„,
which implies TP=TQ on £„, for each n. Let {£n} be a disjoint

sequence having the same partial unions as {£„}. We have TP=TQ

on Fn, since £„Ç£„. Then TP=TQ on £ by countable additivity,

and EEE.

The hypothesis of Theorem 1 may be expressed in two parts:

(I) \R\ >4, E contains a class S whose Borel extension is R, and

XES.
(II) S is a ring.

Proposition 5. In Theorem 1, (II) can be weakened to: S is a semi-

ring.

Proof. The class of finite disjoint unions of elements of S is a ring

[5]. Since it contains S, this ring generates R and contains X. By

Theorem 2B, E contains the ring.

Examples. In all of these, let R be the class of Borel sets.

(i) X = the real line. Let E contain all intervals [a, ß). (Here and

in the following it would suffice to take a and ß rational.) Then £

contains also [a, <») and (— °°, a). With 0 and X, these finite and

semi-infinite intervals constitute a semiring. Proposition 5 applies,

and TP=aP-\-{\—oi)Pc¡ with 0^a5=l as in Theorem 1. This is

equally true if E is assumed instead to contain all proper closed inter-

vals.

(ii)  (a)X=(0, l),(b)X=[0, 1], (c)X=[0, 1). Similar to Example

(i).
(iii) X = Euclidean w-space (w>l). Let E contain all half spaces

{x:x¿^o:} and \x: Xi<a]. Then E contains all finite intersections of

these sets. (This implication is false for w=l.) With X added, these

constitute a semiring,  Proposition 5 applies, and   T has the form
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stated in Theorem 1. This is true also if E is assumed to contain all

slices {x: x<£ [a, ß)}, or alternatively all cells

{x: Xi G [on, ßi], i = 1, • • • , n).

2. Combination. Bush and Mosteller [3] raised the question in

learning theory of whether a set E could be shrunk to a point with-

out making T ambiguous on the reduced space. More precisely, let

EÇzR. A transformation C of (P into itself is called a combination of

E if it satisfies

(Cl) CP = P on -E

and

(C2) P(E) = Q(E)    implies    CP = CQ on E.

For example, let c£P, and let

(2) CP(A) = P{E - A) + A(c)P(E) for each A € R-

We say that EG C (E is combinable) if for each combination C of

P, and for each P£(P, we have

(3) crcp = crp.

In learning theory, (3) is called the Combining of Classes condition.

Theorem 3. C = E*.

Proof. Let P£ C, and C be a combination of P. We observe first

that (Cl) and (C2) imply

(C3) CP = CQ if and only if P = Q on  -E.

Now let P=Q on -£. Then CP=CQ. Hence CTP = CTCP=CTCQ
= CTQ. Then a second use of (C3) yields TP=TQ on —P. This

proves CÇE*.

Let -£££. Let C combine £. Then P = CP on — P, and there-

fore TP=TCP on -P. By (C3), CTP=CTCP. Thus £*ÇC.

Corollary 1. In Theorem 1, ¿&e hypothesis that E contains the alge-

bra A can be replaced by C^A.

Corollary 2. (A) The union of two overlapping sets of C is in C.

(B)   C is closed with respect to countable intersection.

Corollary 3. Let X be finite, \X\ >2, let R be the class of all subsets

of X, and C = R. Then TP=ctP + (\-a)P<!.

This is  the  Bush-Mosteller-Thompson  theorem   [4]  mentioned
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earlier. Bush and Mosteller [3] showed that a(|^| —1)^—1. This

bound is attained.

Regarding Example (ii)(c) as the real numbers modulo 1, let C con-

tain all intervals [a, ß), naturally including the case a< 1 <ß. With 0,

this class is a semiring S. Since S= S*, also E^DS, so that Proposition

5 applies, and T has the familiar form of Theorem 1. In Example (i)

(the real line) the corresponding implication is false, even with the

additional assumption that C contains all semi-infinite intervals, and

similarly for Example (ii). To prove this, we use

Proposition 6. Let T be a combination of E of type (2). Then

CT= [{{c}}+V {e}-KJ [-E}-]r\R.

(For any subset S of X, {S}~ and {S} + denote respectively the class

of subsets of S and the class of supersets of S.) The proof is omitted.

Returning to Example (i), let T be that combination of £= [c, =°)

of type (2) which concentrates £(£) at c. We see that C contains

all the finite and infinite intervals mentioned above, but that inter-

vals [a, ß) containing c are not in E, and the conclusion of Theorem 1

is false here.

3. Partition. A related problem, motivated by learning theory and

political theory, is the following. For n>\, let (P„ denote the class of

all partitions of X into exactly n nonempty parts Xit and let 6»

denote the subclass of partitions (called combinable) for which

the «-tuple [P(Xi), ■ • ■ , P(Xn)] uniquely determines

[TPiXi), • • • , TP(Xn)]. It is not difficult to show that if each

XiEC, then {X\, ■ ■ ■ , X„)£e„. The converse is false, so that the

latter statement is actually weaker than the former. Despite this, we

have

Theorem 4. If en = 6>nfor some w<log2 ¡Ri, then E=C = R, and

TP=aP + (i-a)Po.

Proof. First we show that EEE for all £ divisible into n — 1

(proper) parts. We can assume E^X. Let P = Q on £, and let A C£.

We can express A as U" A,, where either a = n — 1 or each A ¿ is atomic.

If a<n — \, then £ — yl=U"+}^4» by the hypothesis on £. In either

case, P(A,)=Q(At)iori=\., ■ ■ ■ , w-1 and £(-£) =£>(-£). Hence

TP(Ai) = TQ(Ai). Summing from 1 to a, TP(A) = TQ(A), and EEE.
Evidently EEE is proved unless £ consists of the union of fewer

than n — 1 atoms. Let £ be the union of w —2 atoms. Since \R\ >2",

— E has three parts, A, B, C. Then E\JA and E\JB are in E, their
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union is not X, and so their intersection P is in E by Theorem 2A.

Similarly for n — 3, etc. Thus E = R, and the remaining statements

follow from Theorems 1 and 3.

The theorem is false for w^log2 \R\.

Let ân denote the class of partitions of X into n nonempty parts

Xi, each of which is in a fixed semiring S whose Borel extension is R.

(The notation is suggested by examples where S consists of intervals.)

When X is the real line, and S the class of intervals [a, ß), (— 00 , a),

[a, =0), the example at the end of §2 shows that O;¿0nc:e„ for all n

does not imply E = R. The same is true for X a finite interval. The

situation is different for a circle.

Theorem 5. Let X be the set of real numbers modulo 1, and S the class

of intervals [a, ß). If Ä„CC„ for some n, then E=C=R, and TP

= aP + (l-a)P0.

Proof. If n = 2, then evidently SÇB. With the single exception

of Proposition 3, the proof of Theorem 1A applies, with the semiring

S replacing the algebra A. Proposition 1 is superfluous. We show now

that the conclusion of Proposition 3 holds also in the present context.

All intervals mentioned are proper, i.e., not 0 or X.

(1) Let PCP If I—Ii is an interval, then 7i~J as in Proposition

3. If I —Ii is not an interval, then it is the union of two disjoint inter-

vals 72 and I¡. Moreover, pWP is an interval. Thus /i~/iU/¡~/.

(2) If 7ifV2 = 0 and IiUI^X, then there is a proper interval I

containing pVjp. Then P~P~P by (1).

Thus (1) and (2) in the proof of Proposition 3 are true in our pres-

ent case. (3) and (4) apply unchanged. (This proof that SQB implies

the linearity of T is valid also for X = the real line with S all [a, ß),

and for X — Euclidean «-space with S all semiclosed cells.) This

completes the proof for n = 2.

Next, let n>2. Note that P = Q on I ii and only if P = Q for all

subintervals of I touching an end point. Hence /££ if and only if

the equality of P and Q for all such subintervals implies the same for

TP and TQ.
Let P = Q on I, and let P be a subinterval touching an end point.

Write the interval I —h as the disjoint union U3 If, and let P = — p.

(Here we have used the fact that S = S*.) We have (P, • • • , P)£e„,

and P(Ij) = Q(Ij) for all j. Hence TP(Ij) = TQ(Ii) for all j, and in

particular for .7 = 1. Since P was arbitrary, this proves /££. Thus

SQE.
Using S = S* again, we have SQEC\E*. By Proposition 1, SQB,

and the first part of the proof applies.
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