A SYMMETRY THEOREM FOR THE DIFFERENTIAL IDEAL [uv]

KATHLEEN B. O'KEEFE

1. Introduction. Let $F[u v]$ be a Ritt algebra in the indeterminates u and v, and let [$u v$] be the differential ideal generated by the form $X=u v$. If $P=U V$ is a power product (pp.) in u_{i} and v_{j} (the subscripts indicate derivatives) and contains no $v_{k}, k<d_{1}$ (d_{1} is the degree of U), then $P \not \equiv 0$ [uv]. Such pp. are called α-terms, and, in particular, a pp. in u alone, a pp. in v alone, and unity are α-terms. All other pp. may be reduced modulo [$u v$] to a linear combination of α-terms by H . Levi's reduction process $[1 ; 2]$. Levi's methods provide an answer to the question of whether or not a pp. is in the ideal [$u v$] because a linear combination of α-terms is congruent to zero modulo [$u v$] if and only if all the coefficients are zero. Both the reduction process and the above definitions do not make use of the natural symmetry of the ideal $[u v]$. A pp. $P=U V$ of signature $\left(d_{1}, d_{2}\right)$ and weight $w=d_{1} d_{2}$ is reduced to a multiple of the α-term $u_{0}^{d_{1}} v_{d_{1}}^{d_{2}}$, but, by interchanging the roles of u and v, one could reduce P to a multiple of the term $u_{d_{2}}^{d_{1}} v_{0}^{d_{2}}$. In certain of the problems suggested by J. F. Ritt [3], it would be convenient to know the relationship between $u_{0}^{d_{1}} v_{d_{1}}^{d_{2}}$ and $u_{d_{2}}^{d_{1}} v_{0}^{d_{2}}$ so that both types of reductions could be used. The purpose of this note is to exhibit the exact relationship between $u_{0}^{d} v_{d}^{d}$ and $u_{d}^{d} v_{0}^{d}$ so that for a pp . of signature (d, d) and weight $w=d^{2}$, the u_{i} and v_{i} may be interchanged.
2. Symmetry theorems. Let $P=U V$ have signature (d_{1}, d_{2}) and weight $w=w_{1}+w_{2}$. A theorem of H . Levi states that if $w<d_{1} d_{2}$, then $P \equiv 0[u v]$. Special cases of this theorem are stated for easy reference as

Lemma 2.1. (a) If $P_{k}=u_{0} u_{1} \cdots u_{k-1} u_{k}^{2} v_{1} v_{2} \cdots v_{k+1}$, then $P_{k} \equiv 0[u v]$. (b) If $P_{k}=u_{0} u_{1} \cdots u_{k} v_{1} v_{2} \cdots v_{k-1} v_{k}^{2}$, then $P_{k} \equiv 0[u v]$.

Proof. (a) The signature of P_{k} is $(k+2, k+1)$ and the weight is $k^{2}+3 k+1$, hence $w<d_{1} d_{2}$. The proof of (b) is similar.

Theorem 2.2 .

$$
u_{0} u_{1} \cdots u_{j} v_{1} v_{2} \cdots v_{j+1} \equiv(-1)^{j+1} u_{1} \cdots u_{j+1} v_{0} \cdots v_{j}[u v] .
$$

Proof. For $j=0,[u v]_{1}=u_{0} v_{1}+u_{1} v_{0} \equiv 0[u v]$, hence $u_{0} v_{1} \equiv-u_{1} v_{0}[u v]$. Assume that the theorem is true for all values less than j. Replacing

Received by the editors June 24, 1960.
$u_{j} v_{j+1}$ by the other terms in the $(2 j+1)$ st derivative of [uv], we have $u_{0} u_{1} \cdots u_{j} v_{1} v_{2} \cdots v_{j+1} \equiv-u_{0} u_{1} \cdots u_{j-1} v_{1} v_{2} \cdots v_{j}$

$$
\times \sum_{k=0 ; k \neq j}^{2 j+1} \frac{\binom{2 j+1}{k}}{\binom{2 j+1}{j}} u_{k} v_{2 j+1-k}[u v] .
$$

Except for the term $k=j+1$, each term of the sum is zero modulo [uv] by Lemma 2.1. The induction hypothesis applies to the term $k=j+1$, and noting that

$$
\frac{\binom{2 j+1}{j+1}}{\binom{2 j+1}{j}}=1
$$

the proof is concluded.
Lemma 2.3. If $j>0$ and $0 \leqq t \leqq j-1$, then

$$
\begin{gathered}
u_{0} u_{1} \cdots u_{j-t-2} u_{j-t-1}^{r} u_{j-t}^{t-r+2} v_{1} v_{2} \cdots v_{j-t-1} v_{j-t+r-1} v_{j+1}^{t+1} \\
\equiv-\frac{\binom{2 j-2 t+r-1}{j-t-1}}{\binom{2 j-2 t+r-1}{j-t}} \\
\times u_{0} u_{1} \cdots u_{j-t-2} u_{j-t-1}^{r+1} u_{j-t}^{t-r+1} v_{1} v_{2} \cdots v_{j-t-1} v_{j-t+r} v_{j+1}^{t+1}[u v]
\end{gathered}
$$

for $0<r \leqq t+1$.
Proof. Replace $u_{j-t} v_{j-t+r-1}$ by the other terms in the $(2 j-2 t+r-1)$ th derivative of $[u v]$ and get the congruence
$u_{0} u_{1} \cdots u_{j-t-2} u_{j-t-1}^{r} u_{j-t}^{t-r+2} v_{1} v_{2} \cdots v_{j-t-1} v_{j-t+r-1} v_{j+1}^{t+1}$

$$
\begin{aligned}
& \equiv u_{0} u_{1} \cdots u_{j-t-2} u_{j-t-1}^{r} u_{j-t}^{t-r+1} v_{1} v_{2} \cdots v_{j-t-1} v_{j+1}^{t+1} \\
& \times \sum_{k=0 ; k \neq j-t}^{2 j-2 t+r-1} A_{k, r} u_{k} v_{2 j-2 t+r-1-k}[u v]
\end{aligned}
$$

where

$$
A_{k, r}=-\frac{\binom{2 j-2 t+r-1}{k}}{\binom{2 j-2 t+r-1}{j-t}}
$$

The terms with $k=0,1, \cdots, j-t-2$ are zero modulo [uv] by Lemma 2.1(a). The terms with $k=j-t+1, \cdots, 2 j-2 t+r-1$ are also zero modulo [uv]. To see this, consider the sub-pp.

$$
Q_{k}=u_{0}^{r} v_{1+r-k}, \quad \text { for } j-t=1 ;
$$

and for $j-t>1$,

$$
Q_{k}=u_{0} u_{1} \cdots u_{j-t-2} u_{j-t-1}^{r} v_{1} v_{2} \cdots v_{j-t-1} v_{2 j-2 t+r-1-k} .
$$

Q_{k} has signature $(j-t+r-1, j-t)$ and weight $w=(j-t+r-1)(j-t)$ $+(j-t-k)$. Since $j-t<k, w<d_{1} d_{2}$, and $Q_{k} \equiv 0[u v]$. The remaining case $k=j-t-1$ gives the lemma.

Lemma 2.4. If $j>0$, then $u_{0} u_{1} \cdots u_{j-t-1} u_{j-1}^{t+1} v_{1} v_{2} \cdots v_{j-t} v_{j+1}^{t+1}$ $\equiv B_{t, j} u_{0} u_{1} \cdots u_{j-t-2} u_{j-t-1}^{t+2} v_{1} v_{2} \cdots v_{j-t-1} v_{j+1}^{t+2}[u v], \quad B_{t, j} \neq 0$, for $0 \leqq t$ $\leqq j-1$.

Proof. Apply Lemma 2.3 with $r=1$; then, if $t>0$, apply Lemma 2.3 repeatedly with $r=2,3, \cdots, t+1$. Note that

$$
B_{\ell, j}=\prod_{r=1}^{t+1} A_{j-\iota-1, r}
$$

and is not zero.
Theorem 2.5. $u_{0} u_{1} \cdots u_{j} v_{1} v_{2} \cdots v_{j+1} \equiv C_{j} u_{0}^{j+1} v^{j+1}[u v], C_{j} \neq 0$.
Proof. The theorem follows by a j-fold application of Lemma 2.4, with $C_{j}=\prod_{i=0}^{j-1} B_{t, j}$ if $j>0 ; C_{0}=1$.

Theorem 2.6. $u_{0}^{j+1} v_{j+1}^{j+1} \equiv(-1)^{j+1} u_{j+1}^{j+1} v_{0}^{j+1}[u v]$.
Proof. By Theorem 2.5 and the natural symmetry of [uv], we have

$$
\begin{align*}
u_{0} u_{1} \cdots u_{j} v_{1} v_{2} \cdots v_{j+1} & \equiv C_{j} u_{0}^{j+1 v_{v}^{j+1}} j_{j+1}^{j+1}[u v], \tag{1}\\
u_{1} u_{2} \cdots u_{j+1} v_{0} v_{1} \cdots v_{j} & \equiv C_{j} u_{j+1}^{j+1 v_{0}^{j+1}}[u v] . \tag{2}
\end{align*}
$$

By Theorem 2.2, the conclusion follows.

Bibliography

1. H. Levi, On the structure of differential polynomials and on their theory of ideals, Trans. Amer. Math. Soc. vol. 51 (1942) pp. 532-568.
2. D. G. Mead, Differential ideals, Proc. Amer. Math. Soc. vol. 6 (1955) pp. 420432.
3. J. F. Ritt, Differential algebra, Amer. Math. Soc. Colloquium Publications, vol. 33, 1950.

University of Washington

FORMS OF ALGEBRAIC GROUPS

DAVID HERTZIG

In [4] A. Weil solves the following problem: if V is a variety defined over an overfield K of a groundfield k, among the varieties birationally equivalent to V over K find one which is defined over k. The solution is essentially given by the 1 -dimensional Galois cohomology. It was observed by J.-P. Serre that in the case V itself is defined over k the 1 -cocycles can be regarded as putting a "twist" into V. In the particular case of simple algebraic groups over finite fields this gives rise to some new finite simple groups.

Let G be an algebraic group defined over a field k and K a Galois extension of k. An algebraic group G^{\prime} defined over k will be called a k-form of G split by K if there is a rational isomorphism ϕ defined over K between G^{\prime} and G. Denote by \mathfrak{g} the Galois group of K over k. For $\sigma \in \mathfrak{g}, f_{\sigma}=\phi^{\sigma} \phi^{-1}$ is an automorphism of G defined over K and for all $\tau, \sigma \in \mathfrak{g}$ we have $f_{\tau \sigma}=f_{\sigma}^{\tau} f_{\tau}$, i.e. f is a 1 -cocycle from g to Aut ${ }_{K} G$, the group of automorphisms of G defined over K.

Theorem 1. Let G be a connected algebraic group defined over a field k and K a Galois extension of k with Galois group g. The distinct k-forms of G (up to k-isomorphism) are in one-to-one correspondence with the elements of $H^{1}\left(\mathrm{~g}, \mathrm{Aut}_{K} G\right)$.

Proof. Let f be a 1 -cocycle from g to Aut G. By Weil's theorem [4, Theorem 1] there exists a variety G^{\prime} defined over k together

[^0]
[^0]: Presented to the Society, August 28, 1957 under the title On simple algebraic groups. Preliminary report; received by the editors August 22, 1960.

