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1. Introduction. Let F[uv] be a Ritt algebra in the indeterminates

u and v, and let [uv] be the differential ideal generated by the form

X = uv. If P— UV is a power product (pp.) in m¿ and v¡ (the subscripts

indicate derivatives) and contains no vk, k <di (di is the degree of U),

then P ^0 [mí»]. Such pp. are called a-terms, and, in particular, a pp.

in u alone, a pp. in v alone, and unity are a-terms. All other pp. may

be reduced modulo [uv] to a linear combination of a-terms by H.

Levi's reduction process [l; 2]. Levi's methods provide an answer to

the question of whether or not a pp. is in the ideal [uv] because a

linear combination of a-terms is congruent to zero modulo [uv] if

and only if all the coefficients are zero. Both the reduction process

and the above definitions do not make use of the natural symmetry of

the ideal [uv]. A pp. P= UV of signature (di, d2) and weight w = did2

is reduced to a multiple of the a-term u^v6^, but, by interchanging the

roles of u and v, one could reduce P to a multiple of the term m^o2-

In certain of the problems suggested by J. F. Ritt [3], it would be

convenient to know the relationship between u^v\ and w^o2 so that

both types of reductions could be used. The purpose of this note is

to exhibit the exact relationship between u0vdd and ua¿i% so that for a

pp. of signature (d, d) and weight w = d2, the «¡ and Vi may be inter-

changed.

2. Symmetry theorems. Let P=UV have signature (di, d2) and

weight w = wi+Wi. A theorem of H. Levi states that if w<didi, then

P=0[uv]. Special cases of this theorem are stated for easy reference

as

Lemma 2.1. (a) If Pk = u0ui ■ ■ ■ uk_iu\viVi • ■ ■ vk+i, then Pk=0[uv].

(b) If Pk — UoUi ■ ■ ■ UkViVi ■ ■ ■ Vk-iv\, then Pk=0[uv].

Proof, (a) The signature of Pk is (k + 2, k + l) and the weight is

k2-\-3k + l, hence w<did2. The proof of (b) is similar.

Theorem 2.2.

uoui ■ ■ ■ UjViVi ■ ■ ■ Vf+i = (—l)'+lui ■ ■ ■ Uf+iVo ■ • • Vf [uv].

Proof. Forj' = 0, [uv]i = uoVi+uiv0 = 0[uv], hence uQvi=—uiv0[uv].

Assume that the theorem is true for all values less than j. Replacing
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UjVj+i by the other terms in the i2j-{-i)st derivative of [uv], we have

WoWl  ■   •   • UjViV2  ■   •   ■ Vj+i =   —  UoUi  ■   •   • Uj~iViV2  ■   ■   ■ Vj

CJ+l)

X    2_,   -;-ukv2j+i-k [uv\.
k=0;k^j    /2j +   1\

Except for the term k =j+1, each term of the sum is zero modulo [uv]

by Lemma 2.1. The induction hypothesis applies to the term k=j-\-l,

and noting that

er)
-1,

j

the proof is concluded.

Lemma 2.3. If j>0 and O^t^j—l, then

r t—r+2 i+1

UoUi  •   •   ■ Uj-i-2Uj-t-iUj-t     ViV2  ■   •   ■ Vj-t-lVj-t+r-lDj+l

/2j -2t + r-l\

/2j -2t + r-l\

J

r+l        t-r+l Í+1  r      ,

X UoUi ■  ■  ■ Uj-t-2Uj-t-lUj-t    ViV2 ■  ■  -Vj-t-iVj-t+rVj+1 [UV\

for 0<rg/ + l.

Proof.    Replace    Uj-tVj-t+r-i    by    the    other    terms    in    the

(2j — 2t-\-r — l)th derivative of [uv] and get the congruence

r t—r+2 (+1

UoUi   •   •   ■  Uj-t-lUj-t-lUj-t     VlV2   ■   ■   •  Vj-t-lVj-t+r-lVj+l

r t—r+l Í+1

= Wo«l ■  •  • Uj-t-2Uj-t-iUj-t    ViV2 ■  •  ■ Vf-t-lVj+i

2j-2t+r—l

X        ]£       Ak,rUkV2j-2t+r~l-k [uv],
fc=0; k^sj—t

where
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/2j - 2t + r - 1\

Ak.r =-•
/2j - 21 + r - 1\

The terms with k = 0, 1, • • • ,j — t — 2 are zero modulo [wz; ] by Lemma

2.1(a). The terms with k=j — t + l, ■ • • , 2j — 2t+r—l are also zero

modulo [uv]. To see this, consider the sub-pp.

Qk = uovi+r-k, for/' — I — 1;

and for j — t > 1,

Q*  =   WoWl   '   -   •  Mj-i-2«j-i-l»lf2   •   •   • »/_f_l»2/-2i+r-l-*-

G> has signature (;' —i+r —1,/ —i) and weight w=(j — <+r — l)(j — 0

+ (j —í —fe). Since j — t<k, w<didi, and G>=0[ttz>]. The remaining

case k=j — t—1 gives the lemma.

Lemma 2.4. If j > 0, then uoUi ■ ■ ■ Uf-.t-iUft]viVi ■ • ■ Vf-tv¡%\

= BtjU0ui ■ ■ ■ Uf-t-îufê-iViVi ■ • • Vf-t-iv'jX^uv], Btj^O, for 0^¿
áj'-l.

Proof. Apply Lemma 2.3 with r = l; then, if ¿>0, apply Lemma

2.3 repeatedly with r = 2, 3, • • • , ¿ + 1. Note that

i+i

Bt.f =  II ¿/-«-l.r
r-1

and is not zero.

Theorem 2.5. w0mi • ■ ■ Ufvm • ■ • vj+i = CfUj0+ V+1 [uv], Cy^O.

Proof. The theorem follows by a /-fold application of Lemma 2.4,

with Cf= nCÍ Bt.f if ¿>Q; Co= 1.

Theorem 2.6. í4+1i#l = (-l)mí#Vo+1M-

Proof. By Theorem 2.5 and the natural symmetry of [uv], we have

(1) UoUi ■ • ■ UfViVi ■ • • Vf+i m CfUo  v,-+i [uv], Cf ?¿ 0,

(2) UiUi ■ ■ ■ Uf+iVoVi • • • Vf = CfUf+iVo     [uv\.

By Theorem 2.2, the conclusion follows.
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FORMS OF ALGEBRAIC GROUPS

DAVID HERTZIG

In [4] A. Weil solves the following problem: if F is a variety de-

fined over an overfield A of a groundfield k, among the varieties bi-

rationally equivalent to V over K find one which is defined over k.

The solution is essentially given by the 1-dimensional Galois co-

homology. It was observed by J.-P. Serre that in the case V itself

is defined over k the 1-cocycles can be regarded as putting a "twist"

into V. In the particular case of simple algebraic groups over finite

fields this gives rise to some new finite simple groups.

Let G be an algebraic group defined over a field k and K a Galois

extension of k. An algebraic group G' defined over k will be called a

¿-form of G split by K if there is a rational isomorphism 0 defined

over K between G' and G. Denote by g the Galois group of K over k.

For <r£g, /„ =0"0_1 is an automorphism of G defined over K and for

all T, cr£g we have/T<r=/J/r, i.e./ is a 1-cocycle from g to AutxG, the

group of automorphisms of G defined over K.

Theorem 1. Let G be a connected algebraic group defined over a field

k and K a Galois extension of k with Galois group g. The distinct k-forms

of G iup to k-isomorphism) are in one-to-one correspondence with the

elements of 771(g, AutxG).

Proof. Let / be a 1-cocycle from g to AutxG. By Weil's theorem

[4, Theorem l] there exists a variety G' defined  over k together
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