ON FUNDAMENTAL SOLUTIONS OF ELLIPTIC
EQUATIONS!

AVNER FRIEDMAN

In this paper we prove: Let L be an elliptic operator in (x, f) with
constant coefficients, the coefficients of the lower derivatives being
zero, and let L, be the operator obtained from L by deleting all the
terms involving ¢-derivatives. Let K(x, f) be a fundamental solution
of Lu=0. Then [*,[K(x, ) —S(x, t) ]dt is a fundamental solution of
Lw=0, where S(x, ) is a certain simple expression introduced for
reasons of convergence.

A similar result for parabolic equations was proved by Eidelman
[1].

Consider the elliptic equation of order 2m

2m k 2m_1 k_i _k om
(1) Lu= Y, LDu= Y, ( > a;D,D,u) + D, u=0

k=0 k=0 || =2m—k
where x=(x1, - + +, %), D\=D;,=98/9x\ (1=XNZm),1=(31, - - -, 1n),
|i| =414 - - - +4a, Di=D% - - . D' and where a! are real constants.

Clearly, L, is also elliptic.

A fundamental solution K(x, ¢) of Lu=0 is a function defined for
(x, t) #0 which satisfies the two properties:

(i) LK =0 for all (x, t) 0,

(ii) for any function v(x, £) in C*(G), G being any bounded domain
with boundary 9G of class C*™,

oz, 1) = f Kz — & ¢ = )LD, 0)dedr
@
+ f MK = &1 = 7), 5(6, ))dS

where (x, £) is any point of G, and M [w, '] is an appropriate (not
uniquely determined) bilinear form with constant coefficients in
D.D}w, DiDiw', |i| +\+|j| +u=2m—1.

In [2; 3] it is shown that K(y) (y=(x, f)) has the form

3) K(y) = p() log| y| + | y|*> () ¢ =9/l
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where ¢¥/({) is analytic in { near I{ l =1, p(y) is a polynomial of degree
2m—n—1inyif 2m=n-+1 and n+1 is even, and p(y) =0 otherwise.

Let B be a bounded domain in the x-space with boundary B &€ C*™
and let V, be the cylinder {(x, t); xEB, 0<t<a}. It is easily seen
that (2) can be applied in the domain Vs, Taking v(x, £) to be a func-
tion of x only, i.e., v(x, t) =u(x), we get

u(x) = | K(x — &t — 1) Lou(t)dédr

Vae

+ | MoKz — &t — 1), u(®]d=

Sat

+ Mi[K(x — & —1t), u(¥)]dt

Bae

- fBMl[K(x — & 1), u(®))d

4
Z Th
i=1

where M, is related to Ly in the same manner that M is related to L,
M;[w, '] is bilinear form in DiD}w, Diw', |i| +\+|j| =2m—1, and
Ss:, By are the lateral boundary and the upper base of V, respec-
tively.

In what follows we denote by 4 any positive constant independent
of t. We now let t— » and consider two cases.

Case I. 2m—n+1=0. Using (3) we get

A
Inl = | [ wlke -5 -0 u@l|s 5 ez .

Bg:

A similar estimate holds for Ty. To evaluate T3, T, we first consider
the integral

2t

(5) K(z,t — 7)dr = tK(z, Ad\ = G(z, §).

0

Using (3) we have, for any N> 1,

N © X © dX
Dxf K(Z,K)d)\|§Af —_— = Af —
1 1 Xn+l—2m+lzl 1 A2

Similarly for [Z}. Hence, as t—®, G(z, ) converges together with
all its z-derivatives (and, clearly, also with its mixed (g, f)-derivatives)
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to a function G(2) and all its derivatives, provided 2#0. A bound on
G(z) as Izl —0 is easily obtained:

60| s a+ [ 1K@ oS 4]l
Using these remarks and taking t— « in (4), we obtain
6  u(x) = f G(x — &) Lou(8)dt + f Mo[G(x — §), u(¥)]ldo
B B
and
) 6@ = [ kG, oan

Thus, G satisfies the second property of fundamental solutions. It
remains to prove that LiG=0, 20. Recalling that LK =0 we find

t
LoG(z, t) = LoK(z,\)d\

-t

- _ ‘( § Lkp’{) K(z, \)dx

—t k=1

- f) (LD} 'K (3,) — LiD; K(z, —1)] = 0 ").

k=1

Taking t— « we obtain L,G(z) =0. We have thus proved that G(z) is
a fundamental solution of Leu=0.

Cask I1. 2m—n+1>0, n=1. In this case the integrals T need not
converge, and we must modify the definition of G. One way to do it
is the following (compare [1]):

Let a0 be an n-dimensional point, and consider the polynomial in
x with coefficients in ¢:

1
(®) S@wHn = X —(@= 0 [DK@ 0w
Ipl=2m—1 P+
where x?2=x% - - - &%, gl=q! - - - ¢.!. We replace K(x, t) by
9 K*(x, 8) = K(x, 1) — S(x, ¢)

and proceed by the method of Case I.
Using Green's identity with #(£) and K*(x—§£, t—7) we obtain, in
analogue with (4),
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w(x) = f K* — &, L — ) Lou(®)dgdr
Ve

+ | Mo[K*(x— &t — 1), w(#)]dZ
Szt

(10)
+ [ alk* @ — g —0), u(®))de — f MALK*(x — £ 1), () ]dt

B2t

5
+ | w®LS(x — &t — 7)dgdr = 3 T
Va =1
Next, we derive bounds on K* and its derivatives. By Taylor’s
formula

> —1—, (z— o)’ D; K*3,0)| < 4 ¢=1).

|pl=2m P+ trtl

| K*z0)| =

Using differentiability properties of K, as follow by (3), we also get,
for any 1,

_ A
| DIK*(z,0)| < pore ¢z1).

From these estimates it follows that the integral
G*(z, 1) = :K"‘(z, A)dA
and all its derivatives tend to
(11) G*(2) = fwK*(z, N)ax

and all its derivatives, provided z70. We can now proceed, as in
Case I, to evaluate the limits of the T¥, for j=1, 2, 3, 4. As for T¢,

T¢ = f B{ S DLt -, x)dx} u(®)ds

k=1v —¢
L k—1
= f { E D; LS(x — &t — Dy LiS(x — &, —t)} u(¢)dt.
B k=1

From the definition of S it is easily seen that the terms which appear
in the last braces are derivatives of K of order at least 2m— 1. Hence

A
| T¢| = — ¢z 1).

= n =
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As already remarked, T3, T are estimated as in Case I. Combining
these remarks and taking t— «, we obtain a representation analogous
to (6), with G replaced by G*.

Having proved that G* satisfies the second property of funda-
mental solutions of Ly« =0, it remains to prove that LoG*(2) =0 if
z7#0. Noting that L,S(z, \) =0, we have

t t 2m
LoG*(2,t) = | LoK(3, N)d\ = f (Z LkD:>K(z, Ndx = 0( )
-t —t k=1
as in Case 1. Taking t—« we get LG(z) =0.
We sum up our result in the following theorem.

THEOREM. Assume that L, given by (1), is an elliptic operator with real
constant coefficients and let K(x, t) be a fundamental solution of L. If
nZ1, then a fundamental solution of Lo is given by (11), (9), where
S=04if 2m—n+1=0and S is given by (8) if 2m—n+1>0.

We remark that all the use we made of the formula (3) was in de-
riving estimates on K and its derivatives. Such estimates can be de-
rived also for equations with variable coefficients. Using such esti-
mates, the theorem can be extended to some classes of elliptic equa-
tions with variable coefficients. It can also be generalized to elliptic
systems.
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