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1. Introduction. Helly's well-known theorem [3] states that all the

members of a family G of compact convex subsets of the Euclidean

w-space E" have a point in common provided every w + 1 members of

C have a common point. On the other hand (Motzkin, cf. Hadwiger-

Debrunner [2] for further reference), there exists no (finite) number

h with the following property: If X is a family of subsets of P" (even

of P1) such that each member of X is the union of at most two dis-

joint, compact, convex sets, and such that every h members of X

have a common point, then all the members of X have a common

point.

A consideration of the examples which establish the nonexistence

of h led to the idea that there might exist theorems of Helly's type for

such families X if an additional condition is imposed on X: the inter-

section of any two members of X should also be representable as

the union of at most two disjoint, compact, convex sets. The present

paper contains a theorem in this direction together with related re-

sults on families X whose elements are disjoint unions of members of

another family <3.

In §2 we give the definitions of the properties we consider, and the

statements of our main results. The proofs follow in §3. Remarks, ex-

amples, and counter-examples are given in §4.

2. Definitions and results. We shall deal mainly with families of

subsets of some set, on whose nature nothing is assumed.

For a set A or an ordinal ¡j, we denote by card A resp. card fi the

corresponding cardinal. Thus, for a family of sets Q= [Ca: ceÇzA}

we have card C = card A. The letter to is used only for initial ordinals.

For a family of sets  e={C„:o:GiJ   we  put ttG = C\a€A Ca and

o-e = UaeA Ca.

We define P = Ci + C2 to be an abbreviation for the statement

"P=CiUC2 and dnC2=0." Similarly, for <5= \Ca: aEA}, we
write K= ¿oe¿ C« = 2e for "K = ae and CaC\Cß= 0 for all a, ßEA

with a^ß."

If P = 2e, each member of C is a component of K and 26 is a de-

composition of K.
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For any family e and any cardinal y let [e]7= {2e': C'CG,

card e'<7 + l} and [c]={SC:C'CC}. For KE[&] let dK)
= min {card &': K = ~L&, C'Ce}.

This paper deals with some properties of families of sets which we

proceed to define.

Definition 1. A family G is y-intersectional (for a finite or infinite

cardinal 7^1) if for every subfamily C'CC with card e'<7+l we

have 7re'£C The family 6 is inter sectional if it is y-intersectional for

every 7^1.

Obviously, if 7* ^7 and C is 7-intersectional, it is 7*-intersectional

as well. Every family is 1-intersectional; every 2-intersectional family

is t^o-intersectional.

Definition 2. A family e is y-nonadditive (for a finite or infinite

cardinal 7^2) if for every subfamily C'CG, with 0$S' and

Kcard e'<7 + l, such that 2C is defined, we have 26'^6. The

family 6 is nonadditive if it is y-nonadditive for every 7^2.

Examples. The family of all closed [open] subsets of E" is inter-

sectional [i^o-intersectional]. The family of all connected and open

[compact] subsets of En is nonadditive [fcíi-nonadditive; see [4]]. In

the set of ordinals {a: a<a, card <a = k}, for any &>Ho, all segments

of the form [a,ß] or [ß, w), where a, ß are limit-ordinals, form a family

S which is intersectional and nonadditive. For any set 5 with card 5

= £=^^0 the family of all subsets of 5 with complements of cardinal

less than k is Ho-intersectional and nonadditive.

Definition 3. A family 6 has the Helly property of order h with

limit y ih, y cardinals with 2^h<y) if for each subfamily 6'C6,

with card C'<7+1, the condition "^6*^0 for all 6*CG', with

card e*<h + l" implies irQ'?¿0. The family 6 has the unlimited

Helly property of order h if it has the Helly property of order h with

limit 7 for every y>h.

Examples. The family of all compact subsets of any topological

space has the unlimited Helly property of order K0. The family of

convex subsets of E" has the Helly property of order n + i with limit

No; that of compact convex subsets has the unlimited Helly property

of order w + 1 (Helly's theorem). The family of all closed segments

[a, ß] of a well-ordered set has the unlimited Helly property of order

2; if segments [a, /x), for a limit ordinal u, are included, the family

has the Helly property of order 2 with limit card /x.

The first theorem gives a criterion for the uniqueness of the decom-

position of K.

Theorem 1. Let 6 = { Ca: aEA } be 2-intersectional and y-nonaddi-

tive, and KE[e]y. If K= J^a'eA> Ca> with A'CA, card ,4'<7 + l,
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and Ca,y¿0 for all a'(EA', and if K= ^a"eA" Ca" with A"C.A,

card A" <7 + l, and Ca"9é0 for all a"SA", then there exists a one-

to-one map <t> from A' onto A" such that Ca' = C^a') for all a'ÇzA'. In

other words, the components of K are uniquely determined.

As an immediate corollary we have:

Corollary. Let Q be 2-intersectional and y-nonadditive, and let

PG[c]r> (i.e., c(P)s=w), where n is a finite cardinal and y^n. Let

P*G[e]T, PCP*, and let some n different components of K* each

have a nonempty intersection with K. Then different components of K are

contained in different components of K*, and, in particular, c(K) =n.

Obvious examples show that the corollary may fail for infinite w.

The next theorem shows that [c]7 is, in a sense, weakly intersec-

tional: if the intersections of all members of certain subfamilies of

KC[c]r belong to [c]7, then for each subfamily of X the intersec-

tion of its members belongs to [e]7.

Theorem 2. Let 6 be y-inter sectional and y'-nonadditive, XC[c]T

and irXG. [e]7-. Then there exists a subfamily X' CX, with 1 +card X'

ác(irX), such that different components o/irX are contained in different

components o/irX'; in particular, c(irX') ^c(wX).

A result of Helly's type for members of [e]2 is given by

Theorem 3. Let Q be y-intersectional and &0-nonadditive, with the

Helly property of order h and limit y*, y*s^Ho>h. Let XC [c]2 be such

that card X<7 + 1 and PT\P"£- [e]2for all K', P"GX. Then X has

the Helly property of order 2h with limit y*.

3. Proofs.

Proof of Theorem 1. Obviously

K =       Z       (c«. r\ Ca.,)
a'£A';a"£A"

is a decomposition of K. If for each a!(¡ElA' and each a"ÇzA" either

Ca<C\Ca" = 0 or Ca'C\Ca" = Ca', the theorem is proved. Assume on

the contrary that there exists an a¿ <EA' and an a0" G^4" such that

Caii\Ca- is neither 0 nor Ca'0. Let Ai' = \a"<=A": C¿f\Ca..j¿0\.

Then 2gcard A»' <y + l and C„;= Ca>aC\K= Ca¡¡r\ £a„eA„ Ca-

= H<«"G^;,(Ca"P\C0;), in contradiction to the 7-nonadditivity of C.

Proof of Theorem 2. (i) Let c(ttX)^2. Then there exist points

Xi and x2 contained in different components C*, C* of P* = 7rX. For

some P0£X the points Xi and x2 are contained in different com-
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ponents of K0; indeed, otherwise there would for each KEX exist a

component C of K with xu x2EC. Now C = tt{C': KEx}EQ but,

on the other hand, C= Cf^K*DiCr\Ci*) + (CDC2*), and none of the

components is empty (since XiECC\C*), contradicting the y'-non-

additivity of 6. If ciK*) = 2, it follows at once from the corollary to

Theorem 1 that different components of K* are contained in different

components of K0.

(ii) We now assume that ciK*)=n is finite, n>2, and that the

theorem is proved for all n' with n' < n. We start as in (i) with a set

#o= £>ew CG3C, where card A = c(X0)^2, such that CiC\K*^0

and C2C\K*í¿0. Let qv = ciK*C\Cv) ^0 for vEN. By Theorem 1 we

have

(*) E q, = ciK*) = n.

This implies that N0= {¡>EN: q>>0} is finite and contains at most n

elements. Let us assume that N0= {1, 2, • • • , t\ and that the com-

ponents of Ko are labeled in such a way that q*^2 for 1 ¿v^s, and

q,= \ for s<v¿it. If s = 0, then (*) implies t = n, and by the corollary

to Theorem 1 the n components of Ko contain the n components of

K*, as claimed. Thus we are left with the case sei; then 2^t<n,

gia2 and, by the choice of Ka, 22^1; therefore, by (*), q,<n for all

vENo. This allows us to apply the inductive assumption to each of

the s families 3C„ = \C,C\K: KEX.), í¿v^s. It follows that for each

v, with l^p^s, there exists a subfamily 3C„' EXV, containing p,^qt

— 1 members, such that the different components of Cvi\K* are con-

tained in different components of ir3C,'. The family X'=\Ko\

W(Uî=:i 3C,') satisfies all the conditions of the theorem. Indeed, differ-

ent components of K* are, by the corollary to Theorem 1, contained

in different components of irSZ'; but on the other hand, ¡K' contains

only í+J^^1pr^í-s+J^1qr=í-s-\-n-it-s)-n+í-t^n-í
<ciK*) members.

(iii) There remains the case in which A = c(A*) is infinite. Let w

be the initial ordinal of k and let K*=7t3C = E»o G*. For each

i><w let x,EC*. As in (i), for each pair v, u<ü) with v^u there exists

some K,tllEX such that x, and xß are contained in different com-

ponents of K,,„. Let X.' ={Kvy.v, it<co{. Then card OC'á(cardw)2

= k. For the family 3C' we have ciirX') ^k since x, and xß belong to

different components of 7r3C'. By an argument similar to that used in

the proof of Theorem 1 it follows that different components of K*

are contained in different components of wX'. This ends the proof of

Theorem 2.
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Proof of Theorem 3. For some fixed h assume the theorem false;

let k be the minimal cardinal for which there exists a family with

card X = k contradicting the theorem.

(i) Assume k finite. Then for each K* G X we have

w{KEX:K¿¿K*}9¿0. Let X¿ = [K^X: c(K)=i} for i=\, 2, and
let K= Ci-f-C2 for all PGX2. We assume that X is chosen in such a

way that card Xi + 2 card X2 (the total number of components of

members of X) is minimal. This implies that for each P'GX2 and

i = 1, 2, there exists a P° = K°(d) = K°(K', i) G X such that

7r{PGX:P?iP0}CC;.
We shall show that C¡í~\K¿¿0 for all P'GX2, PGX, andi=l, 2.

Let us assume, to the contrary, that there exists P'GX2, PoGX and

i= 1 or 2 such that Ct'P\Po = 0. (Without loss of generality we shall

assume i=\.) Since 0¿¿t{KEX: K^K°(K', 1)}CC/, it follows

that Po = P° = P°(P', 1). Then C{C\K^0 for all K^K"; also
ClC\K^0 for all PGX, since otherwise K'r\Ki\KaC(C{C\KQ)

U(C2 HP) = 0 would contradict the assumption that any 3 <4 = 2A

members of X have a nonempty intersection. Therefore, for each

K?¿K0, c(K'(~\K)=2; hence, for some component C¡ of K we have

Kr\ci=cjr^c{. Now

v{C¡: K G X, K j* K°] = Ci C\ tt{Cj: K G X, K j± P0}

= C2'P\7r{PGX:P^P0} CC/ACi' =0.

Since C has the Helly property of order h it follows that for some sub-

set Xo of X, such that P°GX0 and with card Xa = ha = h, we have

t{Cj:KGXo}=0. For the family X*=[K', P°}UX0 we have

therefore 7rX*C(Cí'P\P0)W(C2' HttXo) = 0, although card X*¿

ho-\-2=h-\-2^2h. This contradiction establishes our assertion.

Next, let P*GX2 be chosen arbitrarily. For each PGX2 it follows

from the above and from c(K*C\K) g2 that c(K*C\K) =2 and that

different components of K intersect different components of K*. Let

the components of K be re-labeled, if necessary, in such a way that

CfC\Ci^0 for i=l, 2. We claim that for all P', P"GX2 we have

C'iCsC'i' 7^0, i = l, 2. Indeed, otherwise we would have (since each

component of one set intersects every other set), C{(~\Ci = C{r\C"

= 0, and therefore K*(~\K'C\K" = 0, which is impossible. Thus, for

anyP', P"GX2,

1 = 0       Hi ^j
C¡nC     tJnt -, • ■\j¿0       if * = jr.

Now we consider the families C¿= XAJ { C¿: PGX2} for t=l, 2. The

assumption irX = 0 implies that7rC¿ = 0 for i = l, 2. Since e¿C6,
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there exist h or less members of 6¿ whose intersection is empty,

i=i, 2. But then the intersection of the corresponding members of

X is also empty, although it involves at most 2h members of X.

The contradiction reached proves the theorem for finite k.

(ii) Let k be infinite, k<y*, and the theorem true for all families

with less than k members. Let w be the initial ordinal of k, let A be

the set of ordinals A—[a: a<u}, and let X = {Ka: a<co}. By the

inductive assumption we have f\a<^Ka9^0 for each /¿<«. If for

some Ka one of its components does not intersect some Kß, we omit

this component and take the other component to be the new Ka. By

the inductive assumption, the new Ka satisfy C\a<y.Ka9i0 for all

u <«. From here on we proceed as in the final part of (i) : we re-label

(if necessary) the components of some Ka with ciKa) = 2, construct

the families 6¿ and derive a contradiction from the assumption that

na<ü) Ka = 0. This terminates the proof of Theorem 3.

4. Remarks. 1. Theorem 2 fails if card wX is infinite and X' is as-

sumed to satisfy card 3C'<card ttX. E.g., starting from the family S

(preceding Definition 3), with card w = k > No = card coo, let

X= { [coo, a]W[a+coo, w) : a limit ordinal <w}. Then ciwX)=k, but

the intersection of any k' <k members of 3C has only k' components.

Similar examples are easily found for ciwX) =No.

2. Probably the most interesting immediate application of Theo-

rem 3 is to convex sets in E". To satisfy the condition of nonadditivity

we may consider, e.g., families consisting only of closed (or only of

open) convex sets. The following example shows that Theorem 3 does

not hold if 6 is, e.g., the family of all convex sets in E2. (Simple

examples of a similar nature show the necessity of nonaddivitity as-

sumptions in Theorem 2.) Let D denote a closed disc with center 0.

Let Ko be obtained from D by deleting 0. Let #¿,¿=1,2, ■ ■ • , 6, be

equidistant points on the boundary of D, ixi = Xi+t). For each i, 1 ^i

iS6, let Ki be obtained from D by deleting the open small arc of

Bd D determined by x¿_i and xi+i, and the open sector determined by

these two points and 0. Then each Ki, O^íáó, as well as the inter-

section of any two Ki, is the disjoint union of two convex sets, and

any six Ki have a nonempty intersection. Nevertheless, H¿8=o Ki = 0.

As is easily verified, the same reasoning applies to the case where 7 or

8 equidistant points are chosen on Bd D. We conjecture that for the

family of all convex sets in E2 a result analogous to Theorem 3 holds,

with 9 instead of 2h.

3. The following statement (with obvious refinements) is con-

jectured: If 6 is an intersectional and nonadditive family with un-
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limited Helly property of order h and if XC[c]r> is such that the

intersection of any 2, 3, • • • , w members of X also belongs to [c]„

then X has the unlimited Helly property of order nh. Simple examples

show that nh—l may not be substituted for nh in this conjecture. If

6 is the family of segments in P1, the conjecture is easily provable.

4. Let 6(n) denote the family of all compact, convex subsets of En;

in [l], a function A(P), with 0_A(P) á+ co, was defined for all

compact sets KQE" in such a way that A(P) < oo if and only if

PG [C(n)]«0. Theorem 2 of [l] may be formulated as follows: For

any finite n = l and real d<<x> there exists a finite h = h(n, d) such

that the family {PG [e(n)]No: A(P) ^¿} has the unlimited Helly

property of order h. By applying the methods of [l ] it may be shown

that for each finite w^l and d<<*> there exists a finite k = k(n, d)

such that A(K)=d implies PG [G(n)]k.
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