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1. Introduction. In this note we consider whether or not an arbi-

trary semi-group W can serve as the input semi-group of a machine

which distinguishes among the elements of W. It is shown (Theorem

1) that the answer is in the affirmative. However, the number of states

needed for such a machine may be arbitrarily large, that is, exceed

an arbitrarily given cardinal number (Theorem 2). Even for a semi-

group which is given by a finite number of generators and a finite

number of relations there may be no finite state machine which dis-

tinguishes the elements (Theorem 3). In the language of data process-

ing, this last statement implies that starting with a finite number of

commands and identifying a finite number of pairs of subroutines,

one cannot always find a finite state machine which does different

work for nonequivalent programs [2].

The technical meaning of each of the less familiar concepts alluded

to above is now given. The reader is referred to [l] for motivation

and mathematical properties of these notions.

Definition. A machine S is a quintuple (A, W, Y, Ô, X) satisfying

the following conditions:

(i) A is a nonempty set (the set of "states").

(ii)   IF is a semi-group (the set of "inputs").

(iii) F is a semi-group (the set of "outputs") in which the left

cancellation law holds (i.e., if a, b, and c are in F and ab = ac then

è = c).

(iv) 5 is a function from A X IF into K such that ô(<?, 77)

— ô[ôiq, I), J] for all elements 7 and / in IF and each q in A.

(v) X is a function from K X W into F such that X(g, IJ)

= X(g, 7)X[5(g, 7), J] for all elements 7 and J in IF and each q in A.

Definition. Ina machine two elements 7 and J of IF are said to

be input-indistinguishable if for each state q and each input M, X(a, 7)

= X(g, J) and X(a, IM)=Xiq, JM). A machine is said to be input-

distinguished, or to distinguish between the distinct elements of W, if

there are no two elements of IF which are input-indistinguishable.

It is known that a number of different situations related to data

processing can be modeled by machines [2]. The left cancellation law

of (iii) removes pathological cases and enables certain desired results
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pertaining to indistinguishable states and input-indistinguishable in-

puts to hold [l].

2. The existence of input-distinguished machines. We assume that

we are given a semi-group IF and seek an input-distinguished machine

with W as its set of inputs. If W satisfies the left cancellation law,

then the one-state machine ({qi}, W, W, 8, X), where \(qi, I) = / for

each / in W, is input-distinguished. Thus our problem is reduced to

the case where W does not satisfy the left cancellation law, a fact, so

far, of little practicality. If we drop the condition of input-distin-

guishability, then there is no difficulty in finding a machine with W

as its set of inputs. In fact, let 1 denote a semi-group with just one

element. The one-state machine ({qi}, W, 1, 5, X) has Was its set of

inputs but any two elements of W are input-indistinguishable.

A positive solution to the problem under discussion is furnished by

the following result.

Theorem 1. Given an arbitrary semi-group W there exists an input-

distinguished machine S=(K, W, Y, 5, X).

Proof. For each element I in W let qi be an abstract symbol. Let

P= [q*}yj{qi/I in W}, where g* is a symbol distinct from the qi.

For each I in W let I* be an abstract element. Let Y be the semi-

group generated by the set {l*/I in W] and the relations I*J* = J*

for all I* and /*. Then Y satisfies the left cancellation law. For each

/ and / in W let 5(g*, /) = qi, d(qJt I) = qn, X(g*, /)=/*, and \(qJt I)

= (//)*.

Consider the function 5. 5(g*, IJ)=qu and 5[5(g*, P), J] = S(g/, J)

= qu; while 5(qM, U)=qMu and o[S(qM, I), J] = h(qMi, J)=qmj-

Consider the function X. X(g*, IJ) = (IJ)* and X(g*, P)X[ô(g*, I), j]

= I*(IJ)*=(IJ)*;whi\e\(qM,IJ) = (MIJ)*and\(qM,lMà(qM,I),J]

= (MI)*(MIJ)* = (MIJ)*. Thus ô and X satisfy the appropriate

conditions making 5 a machine. For ItîJ, X(g*, I)9éX(q*, J). Thus

no two different elements in W are input-indistinguishable. Conse-

quently 5 satisfies the conclusion of the theorem. Q.E.D.

The machine 5 constructed in the proof of the above theorem has

exactly one more state (namely g*) than there are elements in the

semi-group W. Thus if W is infinite, the machine constructed has an

infinite number of states. It is natural to ask if machines with an

arbitrarily large number of states are needed. The next section is

concerned with this question.

3. The number of states of input-distinguished machines.

Theorem 2.  For each infinite cardinal number \&a there exists a
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semi-group W such that the number of states in any input-distinguished

machine with W as its set of inputs is larger than fci„.

Proof. Let IF be the semi-group generated by the set

{7£/£<w„+i} (w„+i, as usual, is the smallest ordinal number of cardi-

nal t$0+i) and the relations PP = P, where 0 = max {¿j, v}. Let

S= (A, IF, F, S, X) be a machine with fewer than fc$a+i states. We

shall show that 5 cannot be input-distinguished.

Let q be any state in A. Since A has power less than or equal to fr$a

and IF has power Ha+i, there exists a subset 77,' of IF of power

Na+i and a state q such that 5(g, 7) =q for all 7 in 77,'.

With the notation above define Hq= [I/I in IF, ô(g, I)=q}. We

shall show that 77, consists of all 7£ for sufficiently large £. To this

end we first establish the following subsidiary result.

(i) Xiq, 7) is independent of 7 in IF.

To see this let 7£ and 7" be any two elements of IF. Select y >£, v such

that Iy is in 77,. Such a choice of y is possible because 77, has power

Na+i. Then

Xiq, P) = X(?, pp) = Xiq, iy)xiq, P)

and

Xiq, P) = Xiq, PP) = Xiq, P)Xiq, P).

Since  F satisfies the left cancellation law, it follows that Xiq, 7f)

= X(g, 7") proving (i).

(ii) If 7£ is in 77, and v>¡-, then 7" is also in 77,.

For this choose y>v such that P is in 77,. Then ô(o, 7") = 5(a, 7£7")

= 6[5(0, P), P] = ô[ôiq, P), P] = ôiq, PP) = hiq, P)=q.
It follows from (ii) that there is an ordinal number r(g) such that

77,= {77r(g) ^£}. (Let r(g) be the smallest £ such that 7£ is in 77,.)

To show that 5 cannot be input-distinguished we need one additional

result.

(iii)  If y>riq), then Xiq, P) is independent of P.

This is seen by observing that if y>r(o), then Xiq, P) =X(g, p^p)

= X(g, 7T(9))X(g, 7?). Now Xiq, 7r(3)) is independent of P, and, by (i),

Xiq, P) is independent of P so (iii) is proved.

To complete the proof of the theorem we note that since A is of

power SStí« there exists an ordinal number cr <0)«+i such that r(g) ¿a

for all q in A. From (iii) it follows that for £, v>a and for each state q

then X(g, 7£)=X(g, 7"). From the definition of r(g) it follows that

5(g, 7£) = S(g, 7"). Hence 7£ and 7" are input-indistinguishable, and S

is not an input-distinguished machine.
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The semi-groups constructed in Theorem 2 are not finitely gener-

ated. We now consider the case when W is generated by a finite

alphabet and a finite number of relations. We are interested in

ascertaining whether or not there exists a finite state, input-distin-

guished machine with IF as its set of inputs. (Since IF is denumerable,

it follows from the proof of Theorem 1 that there exists a denumerable

state machine with the desired properties.) These finiteness restric-

tions not only are of mathematical interest but have relevancy in

data processing [2].

Theorem 3. There exists a semi-group W, generated by a finite

alphabet and a finite number of relations, which is not the input semi-

group to any finite state, input-distinguished machine.

Proof. Let W be the semi-group generated by the finite set

{p, h, I3} and the two relations 7i72 = 7i73 and p/iP = PPP. An

immediate consequence of the two relations is that PPP = PPP.

(a) riF} = riT¡=(hh)n lor all w, where J" = J ■ ■ ■ J (n times). To

see this observe that PPPP = PPPP. Using induction, suppose that

for kúm (i) I\ll=(hli)" and (ii) Ii(IiIi)k = (Iih)kIi. Then 71,+172n+1

- h(lil%)li = h(Iih)mh = (Iih)mIih = (Iih)m+l and 7i(P72)"'+1

= PPP(PP)OT = PPP(PP)"1 = (Iih)(Iih)>»Ii = (Ji/2)",+1P. Thus (i)
and (ii) hold for all integers m. Similarly Iilf=(lih)m and Ii(IJ3)m

= (hh)mh for all integers m. Then 7?7^=(P72)"= (PP)" = 71731 for
all integers w.

(b) IlTl+1 = InJl+1 for no w. The reasoning is as follows. By (a),

/ÏJS+1 = (7iP)"/2 and T¡P¡+1= (IJ3)"I3=(IiIi)nI3. Assume now that

(b) is false. That is, assume that there is an integer n so that (PP)"P

= (PP)"P. Let Ni, Ni, • • • , Np be any proof of this last relation,

i.e., a finite sequence of words such that Pi is (PP)nP, Np is (IiIi)nI3,

and Ni+i is obtained from N, by a replacement of either (i) pp for

Zip or (ii) 7i72 for 7i73 or (iii) lililí for 7i727i or (iv) 7i727i for Iilih.

Let Nr be the first word of the proof such that the right-most symbol

occurrence is replaced in passing to the succeeding word of the proof.

Clearly, each Pt-, 1 ¿i^r, can be written in the form Mt72. NT cer-

tainly exists since Np is not of this form. Moreover, Mi, Mi, • • • , Mr

is a valid proof of Mi = Mr. Since Nr+i must be obtained from Nr by

either (i) or (iv), MT is 77i for some J. Mi is (7i72)\ It will now be

shown that the existence of the proof Mi, Mi, ■ ■ ■ , Mr for (7i72)"

= /7i leads to a contradiction. It is readily seen that the following

three properties about the words M= M, are preserved in going from

Mi to Af,-+i.
(1) The number of occurrences of l\ in M is w.
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(2) If M is the word HiI2H2 or 77i73772; then 77i is a nonempty word

and «2 —«i<«i, where «2 is the length of 77i and «i is the number of

occurrences of 7i in 77i.

(3) M is of length 2«.

From (1) and (3), J7i is not of the form 7i. Thus JIi is either of the

form HiI2I{ or Hipl\. From (1) and (3), ni = n — s and «2 = 2re — j — 1.

Then «ig« — 1 =w2 — «1, which contradicts (2). Thus the proof

Mi, • ■ ■ , Mr of ihh)n = JIi does not exist, demonstrating (b).

(c) There is no finite state, input-distinguished machine

S= (A, IF, F, 5,X). For suppose the contrary, i.e., let 5= (A, W, Y, S,X)

be a finite state, input-distinguished machine. Consider the sequence

of pairs of elements of IF whose typical term is (7j7|+1, I*I0+1). By

(b), the two elements in each pair are different elements of IF. As S

is input-distinguished and A is finite there is a state go which distin-

guishes2 infinitely many of these pairs. Hence there is an infinite set

A of integers so that for each integer /in A there is a word (possible

empty) M¡ of W with the property that

X(g0, ÂiTm,) * Xiqo, fj^M,).

Let j and k, j<k, he two integers in A having the property that

5(?o, 7i) = ô(g0, II). Since A is finite, the integers/ and k certainly

exist. Let gi = ô(go, I{). Then

S(gi, iT') = 5[5(g0, Á), P'] = 5(go, P) = Ji.

Hence for any integer m there exists a state q2 such that 5(g2, If) — qi

(merely let g2 = 5(gi, I"), where « is chosen so that n+m is a multiple

of k—j). Thus there exists a state g3 such that 5(g3, 7{+1)=gi. Then

X(?„ tfltflM_i) = Xiq,, 7Í+1)X[S(g3) I?), I^Mj]

= X(ç3) 7Î+1)X(çi, iTm,).

Similarly X(g3, 7{+17i+IiVf,) =X(g3, OX(gi, 7¿+1My). Since 7{+17i+1

— J-i   lz   ,

Xiq,, lT)Xiqi, l{+1Mj) = X(g3, 7Í+1)X(gi, iTm,).

As left cancellation holds in F, it follows that X(gi, P2+1Mj)

= X(gi, 7j+1il7y). Then

2 A state go is said to distinguish the inputs / and J if either X(g0, /)?íX(go, J)

or X(g0, 7) = X(g0, J) but there exists JWsuch that X(g0, IM)^\(qa, JM).



666 SEYMOUR GINSBURG AND E. H. SPANIER [August

X(g0, 7i72   M,) = X(g0, 7i)X(gi, 72   M,)

= X(g0, 7i)X(gi, 73   Mf)

= Xiqo, iil^Mj),

contradicting the fact that X(g0, 7{7^+1MJ) ̂X(g0, 7i7i+1Af;). There-

fore 5 cannot be a finite state, input-distinguished machine and (c),

thus the theorem, is proved.

Remarks. (1) It would be of interest to find some general condi-

tions on a semi-group IF, generated by a finite alphabet and a finite

number of relations, which guarantee the existence of a finite state,

input-distinguished machine (A, W, Y, S, X).

(2) It is known that there exist semi-groups, generated by a finite

alphabet and a finite number of relations, in which the word problem

is unsolvable, i.e., there is no finite procedure for deciding whether

or not two words are equal [3]. For such a semi-group W, if there

exists a finite state, input-distinguished machine with IF as its set of

inputs, then the word problem in the output semi-group F is also

unsolvable. For suppose that the word problem in F is solvable. Let

7i and I2 be any two words in IF. For each state q it can be decided

in a finite number of steps whether or not X(g, 7i)=X(g, 72) and

whether or not 5(g, 7i) and 5(g, 72) are indistinguishable states.3 Thus

it can be decided in a finite number of steps whether or not 7i and 72

are input-indistinguishable,4 thus whether or not 7i and 72 are equal.

Consequently the word problem in IF is solvable, which is a contra-

diction.

In connection with Remark (1) above, the following result, due to

the referee (as are the two results after the next theorem), shows that

no effective necessary and sufficient conditions exist.

Theorem 4. It is recursively unsolvable to determine for an arbitrary

semi-group W, given by a finite alphabet and a finite number of defining

relations whether or not there exists a finite state, input-distinguished

machine (A, IF, Y, 5, X).

3 Two states qi and q% in a machine S = (K, W, Y, 6, X) are said to be indis-

tinguishable if X(gi, I) = X(g2, 7) for each input 7. In case 5 is a machine with n states,

Wand F are free semi-groups generated by the finite alphabets 2 and A respectively,

and X(g, 7) is in A for each state g and each 7 in 2; then it is known that two states

gi and q\t are indistinguishable if and only if X(gi, J)=\(q¡, J) for all words J of length

at most n — \ [5]. This result is easily seen to hold for any machine with n states

whether W is freely generated by 2 or not.

4 In any machine I¡ and 7o are input-indistinguishable if and only if for each state

q, ¡(q, Ii) and S(q, 72) are indistinguishable states and X(g, 7i)=X(g, 72) [l].
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Proof. Call a semi-group finitely presented if it can be given by a

finite alphabet and a finite number of defining relations. The theorem

is a direct application of the following result of Markov [4]. A

property P about finitely presented semi-groups is called Markov if

(1) every semi-group isomorphic to a semi-group having property

P also has property P;

(2) there is a semi-group Wi which has property P;

(3) there is a finitely presented semi-group Wi which does not have

property P and is not imbedded in any semi-group having property P.

The cited theorem asserts that for no Markov property P does there

exist an algorithm for deciding in a finite number of steps whether or

not an arbitrarily given finitely presented semi-group has property P.

Thus we need only verify that being the input semi-group of some

finite state, input-distinguished machine is a Markov property.

Now (i) is trivial. As to (ii) let IFi be the semi-group with just one

element. With Wi as the set of inputs, the one state machine

({gi}, Wi, Wi, 8, X) is input-distinguished. As to (iii), let the semi-

group W used in the proof of Theorem 3 be imbedded in a semi-group

W. We assert that there is no finite state, input-distinguished ma-

chine of which W is the set of inputs. The equations (a) and inequa-

tions (b) of the proof of Theorem 3 certainly remain valid under the

assumption that W is embedded in W. The nontrivial point is that

the argument for (c) of the proof of Theorem 3 remains valid if the

variable M¡ has W as its domain. But to see this we need only replace

W by W at all occurrences in the statement of and argument for

(c)—with the exception of the second sentence following the state-

ment of (c). Then (a), (b), and (c) thus revised of the proof of Theo-

rem 3 furnish the proof of (iii) needed here.

Remark. The Markov theorem quoted above yields two other re-

sults pertinent to the topic under discussion.

(1) It is recursively unsolvable to determine of an arbitrary ma-

chine whether or not it is input-distinguished.

Proof. The one state machine ({gi}, W, 1, 5, X) of the first para-

graph of §2 is input-distinguished if and only if IF is the semi-group

with just one element. But, clearly, the property of being the semi-

group of just one element is a Markov property of finitely presented

semi-groups. Hence the result.

(2) It is recursively unsolvable to determine of an arbitrary finite

state machine (P, W, Y, 5, X), where (i) W is finitely presented and

satisfies the left cancellation law, and (ii) Y is finite, whether or not

it is input-distinguished.

Proof. It is known that one cannot determine recursively of a
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finitely presented cancellation semi-group whether or not it consists

of just one element [6]. This and the construction in (1) above yield

the result.
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