ON THE SPECTRUM OF A CONTRACTION!
M. SCHREIBER

1. Introduction. In this note we present several results on the spec-
trum of a contraction. The first is an extension to the approximate
point spectrum of a result of Nagy and Foias, on the relation of the
point spectrum of a contraction and that of its unitary dilation,
which has several corollaries. The second is a simple solution to a
problem in spectral mapping raised in [2]. Finally we have a result
on the point spectrum of a class of contractions discussed in [3]. For
the background on unitary dilations see [4] or [5].

2. Arbitrary contractions.? In Theorem 1 of [6] it is shown that
the set of eigenvalues of modulus 1 of a contraction 4 coincides with
that of its unitary dilation U. Less is true for the approximate point
spectrum Z,,4. (See [1] for the definition of =,,.)

PRrROPOSITION. Let A be a contraction on a Hilbert space H and let U
be a unitary dilation on o (larger) space K. Then p=e*EZ,,A4 if and
only if uEZ.,U with approximate eigenvectors in H.?

(Thus, if pEZ,,U, Iul =1, but the approximate eigenvectors are
not in H, then u&2,,4.)

ProoF. Let P be the projection of K onto H. If there are unit vec-
tors x, € H with ||Ux, — ux,|| = 0 as n — «, then ||4x. — px|
=||PUxw—pPx,|| < || Ukn— ps|| 20 as n—o, so that uEZepd. For
the converse, there is clearly no loss of generality in taking p=1, and
we suppose there are unit vectors x,& H such that

|42, — x| < 1/m, n=1,2---,

from which it follows that || Ax.|| Z1—1/7. Again let P be the projec-
tion of K onto H, and write H* for the orthogonal complement of
H in K. Now Uxp=1us~+vs, with u.CH, v,€H*, and ||u.||2+| v
=|| Uxa||2=||xa||2=1. Since #n=P Ux,=Axn, we have
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1 Research for this paper was sponsored by the National Science Foundation Con-
tract No. G5253.

2 We are grateful to the referee for simplifications of the arguments in this and the
following paragraph.

3 By a unitary dilation of an operator 4 on H is meant a unitary operator U on a
space K O H such that PUx=Ax for all x & H, where P is the projection of K onto
H. In [4; 5] a unique minimal such dilation is studied, but for present purposes
minimality is irrelevant.
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The components in H and H* of Ux,—x,, the vector whose norm is
to be estimated, are Ax,—x, and v,, respectively, as is clear, and so
1 2 1 2
N N
n? n  n? n
by the displayed inequalities, whence “ Ux,,—x,.“ =<(2/n)'* and the
proof is complete.
[ADDED IN PROOF. Professor Sz.-Nagy has remarked in a private
communication that the proposition may be proved very simply as
follows. With notation as above, for x & H we have

Uz — a2 = [|Ua]]* + ||« — 2 Re(Ux, x)
= 2||«||2 — 2 Re(T%, x)
= 2 Re(x,x — Tx) = 2“x||“x — T4,
and the conclusion follows at once. ]

COROLLARY 1. The approximate eigenvalues of modulus 1 of A* are
the complex conjugates of those of A.

Proor. If p=¢*CZ,,4 then u&Z,, U with approximate eigenvec-
tors in H, so that given €>0 there exists a unit vector xEH with
H Ux— ux“ <e. Hence ” U *x—ﬁxl <, trivially, and by the proposition
again it follows that || 4*x —ax|| <e, as was to be shown.

The same result for the point spectrum is given in [5, p. 88].

COROLLARY 2. Near a gap in 2 U there can be only residual spectrum
of 4.

ProoF. By a gap in 2U is meant an open arc of the unit circle
which lies in the complement of 2U, and the assertion is that every
such gap is contained in a planar open set disjoint from Z.,4. The
proof is based on the closure of Z,,4. Suppose this for the moment.
Let G be a gap in 2U and e*€G. Then there must be an open circle
C. centered at e with C,MNZ,,4 = &, else e would be a limit point
of 2,4, hence in Z,,4, and therefore by the proposition a member of
Z4,U, contrary to supposition. The open set required by the corollary
is then U, C.. We complete the proof by showing that Z.,4 is closed,
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for any bounded 4. Let \aEZ4p4, Mu—N. If A&EZ,,4 then there exists
€>0 such that ||(4 —\I)x|| Z¢ for all unit vectors x. Then A=
= [[(4 =ADx — (4 =\D)xl| 2 € = [|(4 = N\Da]), s0 ||(4 — AaD)a]
Ze—|N—\4| for all unit vectors x. In particular, if |N\,,—\| <e/2
then [(A —)\,.,I)x” Z¢/2 for all unit vectors, so that A\, &Z.p4,
contrary to supposition.

A side condition such as the one employed in the proposition (that
the approximate eigenvectors for U be in H) is seen to be necessary by
taking for 4 any contraction with no spectrum on {|z| =1}, whereas
SUC{|z| =1} and2U=2Z,,U (see [1, p. 51]). In particular we know
that for such 4 the approximate eigenvectors of its dilation U cannot
be in H.

3. A spectral mapping problem. In [2] we studied the preservation
of 2,4 under general mappings and noted that in general it is not pre-
served in the reverse direction (that is, «&f~!(8) need not be an eigen-
value of 4 when f(8) is an eigenvalue of f(4)). On the other hand it
is trivially clear that if for all function f the number f(u) is an eigen-
value of f(A4) then u is an eigenvalue of 4. The problem is to find a
nonvacuous condition sufficient for preservation of 2,4 in the reverse
direction.

Let C.(f) be the nth Taylor coefficient of f, and write f, for the func-

tion fi(s) =f(ts).

PROPOSITION. Let A be a contraction, and f a fixed function analytic
for Izl <1. If fl(A)x =f(u)x for infinitely many (complex) t converging
inside the unit circle, then A™x=umx, where m is the least n>0 such
that C.(f) #0. Conversely, if A™x=u™x and Ci(f) =0 for 0k <m then
fi(A)x=fi(u)x for all |¢| <1.

Proor. By hypothesis f(g) = ¢ Ca(f)z" converges for |z| <1, so
fe(8) = 25 Ca(f)trz* has radius of convergence r(f)>1 for |¢| <1.
Since ||4]| =1 the operator series D5 Ca(f)A4™" converges in norm,
for |¢| <1, to an operator which we define as fi(4), so that

(FuA),3) = ?c,.(f)u"x, gr=Fo, |1 <4,

is an analytic function of ¢, for each pair x, ¥ of vectors. (This defini-
tion of fi(A) agrees with that of [4], (f:(4)x, ¥) = [fi(e®*)dF(s)x, ),
for by uniform convergence the integral is equal to

> Ca(fe f emd(F(s)z, 3) = 3 Calf)n( A%, 3),
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and it is easy to see also that it agrees with the classical definition by
the Canchy integral formula.) Similarly f.(u)(x, ¥) =(f:(u)x, ¥) may
be expanded in the series

(ft(#)x’ y) = Z::Cn(f)(””x’ J’)t” = G(t)’ I tl <1l

Now for the first assertion of the proposition we have by hypothesis
that F=G on an infinite set with limit point inside the circle. Since
F and G are clearly analytic for |t| <1 we conclude that F(t) =G(2),
|¢| <1. This means that, for all 20 and all yEH,

cﬂ(f)(A"x) )’) = c,.(f)(p"x, }’),

and the assertion now follows by cancellation of ¢,(f). The second
assertion goes in the same spirit. The hypotheses involve F(f) =G(¢)
for |t| <1 and therefore (fi(4)x, ¥) = (fi(u)x, ¥) for all y and |t| <1,
which yields the conclusion.

4. A contraction 4 is absolutely continuous if there exists a func-
tion K (¢, x, ¥) € Ly(0, 27) for every pair of vectors x, ¥, such that

1 2%
A0z, 3) = — [ TemK(, =, yat
2rJ o
forall n=0, +1, - - - (here A—™ =A4*") (see [3]). This is a smooth-

ness condition which reflects itself in the spectrum of A as follows:

PROPOSITION. An absolutely continuous contraction has no eigen-
values of modulus 1.

ProOF. Let 4 be absolutely continuous. The representation above
for A in terms of K amounts to the assertion that K has the Fourier
expansion

K(t’ x’ y) ~ Z e—i"t(A (”)x’ y)'
Now suppose that Ax=e*#x for some unit vector x and 0=8=2x. It
then follows from [5, p. 88] that A™x =ei"x for n=0, +1, +2, - - - .

Hence the Fourier expansion for K(-, x, x) reduces to

0
K(t, x, x) ~ D enmbemint,
—

But K(-, x, x) €L, so that its Fourier coefficients ¢ must tend to 0.
This contradiction completes the proof.
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A SUBSTITUTE FOR LEBESGUE’S BOUNDED
CONVERGENCE THEOREM

I. NAMIOKA

1. Lebesgue’s bounded convergence theorem has become a power-
ful tool in the theory of linear topological spaces, and recently, for a
treatment of weak convergence of sequences or for a proof of Krein's
theorem, the tendency is to use it in an essential way.! The following
is a useful substitute for the bounded convergence theorem stated in
the language of linear space theory.

THEOREM 1. Let C be a compact (or countably compact)? subset of a
(real or complex) linear topological space E, and let { f,,} be a sequence
of continuous linear functionals on E which is uniformly bounded on C.
If, for each x in C, lim, fa(x) =0, then the same equality holds for every
x in the closed convex extension of C.

In case C is compact and Hausdorff, the proof of Theorem 1 may
run as follows: Let F be the Banach space of all scalar-valued con-
tinuous functions on C with the supremum norm; then there is a
linear transformation T on the dual E* of E into F defined by the
equation T(f) =f| C. Let %, be a point in the closed convex extension
of C. Then one can define a bounded functional ¢ on the range of T
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1T am indebted to the referee for the remark that, in Dunford and Schwartz [2],
Krein's theorem is proved using Riesz-Markoff-Kakutani’s theorem but not Le-
besgue’s bounded convergence theorem. Their proof relies on the theory of integration
of vector-valued functions.

% A space X is countably compact if each sequence in X has a cluster point.




