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1. Introduction. Edwin Hewitt has asked if the real line £ is a

normal topological space (see below for the definition of this term)

when it is given the topology 3 which is defined in the following way.

Fix a Hamel basis H for £ over the rational numbers. For xG£ and

a(E.H, let x„ denote the oth coordinate of x in its expansion with re-

spect to H. Now, for each countable subset K(ZH and each e such

thatO<ei=  co, define

V(K, e) = {x G £: | x \   < e and xa = 0 for a G K].

Then 3 is the group topology on £ that has the collection of all pos-

sible V(K, e) as a basis of open sets at 0. The space (£, 3) is obviously

completely regular, since it is a topological group. Theorem 1 answers

Hewitt's question. Before stating the theorem, let us recall that a

topological space X is normal if any two disjoint closed sets have dis-

joint neighborhoods.

Theorem 1. The real line R under the topology 3 defined above is nor-

mal if and only if the continuum hypothesis is true.

2. Proof of sufficiency. First a lemma is stated, next it is pointed

out how the lemma implies the desired result, and finally a proof for

the lemma is given. For use in stating the lemma, recall that a collec-

tion 11 of disjoint subsets of a topological space X is discrete if

xGdJoi)- implies that xG U~ for some Z/GH. (The bar indicates

closure in X.) As for notation, we adopt the convention that i and j

run over all integers 2:0, and « runs over all integers 2:1.

Lemma 1. If the continuum hypothesis is true, then there exist a

countable number of subsets £¿ of R and a countable number of collections

Vi such that

(1) £ = Ui£,;
(2) for xG£», there is a unique ViiX(EVi with xG Vi<x;

(3) for xG£i, yGRi, Vi,xr\Vi,y=0 ifx^y;
(4) for each i, Vi is a discrete open collection.

Let us show how Lemma 1 is applied. From [2, 5.32] it will be

seen that it is sufficient to prove that (£, 3) is paracompact. This

latter term may be defined as follows. X is paracompact if each open
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cover of X has an open refinement consisting of a countable union of

discrete collections. (See [2, 5.28].) Now, if 11 is an open cover for R,

choose for each x G R a i/,Ê1l with x G Ux. Then define V?i

= {Vi,xr\Ux:xGRi}. It is easy to verify that eVv = UitW,- has the

desired properties.

Proof of Lemma 1. In the way of notation, define for each integer

¿2:0

Ti = {x G R '■ xa t¿ 0 for exactly i of the a G 77}.

It will be proved that there are a countable number of subsets Ti¡n of

Ti and a countable number of collections %v,-,» such that

(1) Ti = \JnTijn;

(2) for xGTi,n, there is a unique W„(x)£W¿,„ with xGWn(x);

(3) for xGTi,n and yGTt,n, Wn(x)nwn(y)= 0 if x^y;

(4) for each «, W¡,„ is a discrete open collection.

(Note that in (4) we mean discrete and open with respect to (R, 3).)

It is not difficult to verify that Lemma 1 is a consequence of this.

We begin by using the continuum hypothesis to number the Hamel

basis 77 from 1 to (but not including) 0, where ß is the first uncounta-

ble ordinal. For l^a<S2, a(a) will denote the crth aGH. Also, for

x^O, let 8X be the largest ordinal a such that xa(a) ^0. Now introduce

a relation on R by defining y<x to mean that X9éy, but y^Xa only if

x^O and ya = 0. Note that each x has a finite number of predecessors.

For x^O, define

W(x)= {zGR: Za(a)=Xa(.a) for a = ôx} ;

and for each «, define

Wn(x) = {z G W(x) : | z — y |   > 1/« for all y < x).

When i>0, let Wiitl= { Wn(x): xG7\}, and set Tiin= [UW;,„]r\r,-.

Wheni = 0, let T0,n= {o} for all «, and let W(,»= {R}.

Let us check that these sets satisfy (l)-(4) above. This is obvious

when -¿ = 0; hence we suppose that i>0. Clearly, for x£7,-, one can

choose « so large that |x — y\ >l/w for all y<x. Hence, for this «,

xGW„(x)GV?i,n, and (1) follows from this. Moreover, if x and y are

both in Ti, W(x)C\W(y)9£0 only if x = y; hence, for x and y in

Ti,„, Wn(x)r\Wn(y) 9*0 only if x = y. Property (3) is a consequence

of this, and (2) follows from this and the definition of 7,-,„.

In proving (4), let us first verify that W,-,„ is an open collection.

Note that each W(x) is open, since W(x)=x+V(K, «>), where

K= {a(a) :a^5x}. Also, since each member of the usual topology for

R is in 3, U= {zGR: \z — y\ >1/« for all y<x] is in 3. Hence Wn(x)

= W(x)f~\ U is open.
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Finally, to show that W¿,„ is a discrete collection, suppose

zGiUW,,,,)-. Now zG£j> for some integer p. If p^i, then let y be

defined by choosing ya = za except for the p — i largest a for which

Za^O (where "largest" refers to the ordering of H) ; for the excepted a,

let ya = 0. For this y, z£W(y) and yE.Ti; hence W(y) is a neighbor-

hood of z which meets only one member of W,-,„, namely Wn(y)

All that remains is the case p <i. It will be proved that, for z and p

as above, this case cannot occur. Suppose zÇ^Tv, p<i, and let

U = {y(= W(z): \y- z\   < 1/n}.

We will prove that U is a neighborhood of z which does not meet

U%v,-,n. Suppose to the contrary that UC\Wn(x) ¿¿0 for some xG£¿,

and choose a y(E. Ur\Wn(x). Note that z<x, since Uf~\Wn(x)¿¿0

implies that W(z)(~\W(x) ^0, and the latter implies that xaW =zaM

for all a^8z. This leads to a contradiction because y<EWn(x) and

z<x imply | y— z\ > 1/n; but y<E. U implies | y — z\ <l/re. (Note that

U is open for the same reason that each Wn(x) is open.)

Corollary. Assume the continuum hypothesis. Then every subspace

of (R, 3) is paracompact, and hence normal. Also, every subset of (R, 3)

is an Fc. (An F„ is a subset which is the union of a countable number of

closed subsets.)

Proof. Note that Lemma 1 remains true if £ is replaced by a sub-

space A of £. Hence A is paracompact as above. Also, observe that

the properties of Vi imply that each subset of £, is closed. Hence

A =Ut- (RiC\A) with each Ri(~\A closed in (£, 3).

Remark. The last assertion of the corollary can be derived without

the continuum hypothesis by an argument similar to that appearing

in the first paragraph of the proof of Lemma 2 in the next section.

3. Proof of necessity. Throughout this section it will be assumed

that fc$i<2No. We will suppose that (£, 3) is normal and argue for a

contradiction. This will follow a sequence of lemmas.

Let * be the least integer such that Tt is of second category in

£—where, from here on, £ will denote the real numbers under their

usual topology.

Lemma 2. X = \},- £,+3- is a normal subspace of (R, 3).

Proof. It will be proved that X is an £„ in (£, 3). It is sufficient

to show this, since it is well known that an F„ in a normal space is

normal. Define, for integers j and n, T,,n= {xG£¿: \x— y\ >\/n for

all y<x\. (The £,,„ of the last section could have been defined this

way.) One may easily verify that £, = Un £y,„. Hence it will suffice to

prove that each £,-,„ is closed in (£, 3).
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To accomplish the latter, first suppose that yGTk\Tjin (k^j) and

K= [aGH: ya^O}. Then y+ V(K, oo) is an open neighborhood of y

which does not meet T},„. Now assume that yGTk (k <j) and that K

is as above. Then y+V(K, 1/«) = V does not meet Tj¡n. In fact, if

xGTjCW then y¡, = x& for all b such that y&^O. Hence y<x, but

|x-y| <1/m. It follows that xG'Tjin.

For convenience, let us suppose that, whenever a rational number is

written in the form m/n, we have m and « relatively prime. Define A

to be the set of x£ 7\- such that, for any a, the m in the expression

xa = m/n is even. Let B = T(\A. It follows by an argument similar to

part of the proof of Lemma 2 that each subset of Ti is closed in X.

Hence A and B are both closed in X. By the normality of X, one may

choose disjoint U and V, each open subsets of X, such that A C U

and 5CF.
By the definition of the topology 3, one may choose, for each

xGÀKJB, a countable K(x)GH and e(x)>0 such that V(x)

= [x-f V(K(x), e(x))]f~\X is contained in U if xGA, or in V if x£B.

Using this notation we will now describe some of the properties of A

and B.

Lemma 3. A is of second category in R.

Proof. Either A or B is of second category in R, since A\JB = T,.

For xGB, 2nxGA if « is large. Let Bn= {xGB: 2"x£^}. If B is of

second category in R, then so is Bn¡¡ for some «o. Hence A, which con-

tains 2"oBno, is of second category in R.

For 5Ci? and 7CC77, let S(K) = {xGS: x„ = 0 when aGR~}.

Lemma 4. If SC7\ is of second category in R, then S(K) is of second

category in R for each countable subset K of 77.

Proof. Let gK denote the group generated by K. Suppose

xCgAfo}. Let Sx=(S-x)(K). Since SxC{Tr:0 = r<i}, Sx is of
first category in R by the minimality of i. Hence Sx+x is of first

category in R. Since K is countable, 7'=U{5I+x: xGgK\{o\ } is of

first category in R. Consequently, S(K) =S\T is of second category

in R.

For each set 5 let | S\ denote the cardinality of S. Let us say that

an interval 7 (all intervals which occur here will be open) is ^-filled

with a subset S of R if, for each KGH, \K\ <N2, one has | S(K)CM\

Lemma 5. If I is ^-filled with a set S which is the union of a countable

collection of Sn, then for some «o there are arbitrarily small intervals

contained in I which are ^-filled with S„0.
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Proof. Suppose to the contrary that, for each «, there is some

0(«)>O such that, given an interval J of length less than 6(n), one

may choose KjdH with the property that \Ji~\Sn(Kj)\ <K2 and

| Kj\ <K2. For a fixed «, let £1, J2, • • • be a countable cover of / by

intervals of length less than 6(n). Define Kn as U,- Kj¡, and K as

U» £„. ThenSn(£„) CH, S«^.) ; hence S.(Kn)r\ICVj (S„ (£.,,.) H £,),
and \Sn(Kn)iM\ <N2. Also, S(K) CU„ Sn(£„) ; hence |S(£)fV|
á|U„ (S„(£„)fM)| <N2. Since |£| <N2, this contradicts the as-

sumption that / is i$2-filled with S.

Lemma 6. Each interval I is Refilled with B.

Proof. Suppose |£| <R2. Then |£(£)| >Ki as one may easily

verify. Let xG£\{o} be chosen such that each interval containing x

also contains b$2 elements of B(K). Choose a rational number r of the

form m/2n (n>0) such that rxG£ Note that rB(K) QB(K), since m

and 2" are relatively prime. Hence |£(£)fV| 2r|r£(£)Pij| 2rN2.

For the remainder of this section, let n be an integer, and let / be

an interval, such that « and / have the properties of the next lemma.

(For the statement of Lemma 7, recall the definition of e(x) in the

expression of V(x).)

Lemma 7. There are an integer n and an interval I such that (1) if

An= {xÇzA: e(x) >1/«} then A „CM is of second category in £, (2) lis

Refilled with Bn where Bn= {xG£: e(x) > 1/«}, and (3) I is of length

less than 1/n.

Proof. For (1) choose an integer p such that A P is of second cate-

gory in £. It is not difficult to show that, for some interval J, AVC\L

if of second category in £ for each subinterval L of J. Now J is

S2-fiHed with B by Lemma 6, and by Lemma 5 there is a q such that

there are arbitrarily small subintervals of / which are fc^-filled with

Ba. Let n = max(p, q). Choose / to be a subinterval of / such that (3)

is satisfied for I and (2) is satisfied for Bn and I. It follows that (1),

(2), and (3) are satisfied for « and I.

This completes the sequence of lemmas, and we now observe the

following facts:

(i) // xG(An\JBn)ÍM, then V(x)ÍM=W(x)ÍM, where W(x)

= [x+ V(K(x), œ)]r\X\ For suppose yE.W(x)i^I; then \y—x|

<l/«<e(x), and yGV(x)(~\I.

(ii) // yGW(x)fW(x') for xEAnÍM and x'GBnÍM, then there

is some y'<=W(x)i\W(x')rM. In fact, let aGH\CK(*)^#(*')) be
chosen such that ya = 0. Now pick a rational number r such that

y' = y+raG£ It follows that y' has the desired property.
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(iii) For each xGAn(~\I and each x'GB„ÍM, W(x)C\W(x') = 0. In

fact, suppose y£W(x)C\W(x') for some choice of xGA„(~\I and

x'GBnr\I. Pick y'GX as in (ii). Then by (i), y'G V(x)r\V(x'),
which contradicts the assumption that UC\V=0.

This section will be completed by proving that (iii) is false. To

accomplish   this,   choose   by   induction   on   a  an

x(a) G (ir\An)(U{K(x(ß)):ß < a})

for 1 —a<ü such that

(S) (x(a))a = 0 if (x(ß))a 9¿ 0 for any ß < a.

This is accomplished by using Lemma 4 and the fact that An(~\I is of

second category in R. Now pick x0CBnr>\7 such that (xo)0 = 0 if

either <zCU{7i(x(a)): 1 =a<Q} or (x(a))a9¿0 for some l^a<Q.

This is accomplished by using the fact that 7 is fc$2-fiHed with Bn.

We will contradict (iii) by proving that, for a sufficiently large

a, W(x<i)r\W(x(a)) 9a0. In fact, pick a large enough so that (x(a))a

= 0 if either aGK(x<¡) or (xo)a9éO. (This is possible because of condi-

tion (5).) One may verify that, for this a, Xo+x(a)GW(x(¡)rMV(x(a)).

This completes the proof.

4. Remarks, (a) The first three lemmas of §3 can be either much

simplified or omitted when the Hamel basis is of second category in

R. However, this is not always so; for instance, a maximal linearly

independent subset 77 of a set which is both of positive measure and

of first category in R can be proved to be a Hamel basis. On the other

hand, V. L. Klee has pointed out to me that a method due to F. B.

Jones [Bull. Amer. Math. Soc. vol. 48 (1942) pp. 115-120] demon-

strates the existence of a Hamel basis 77' which is of second category

in R.

As in §1, define a topology 3 on R using 77, and a topology 3' using

77', where 77 is of first category in R and 77' is of second category in

R. One might reasonably conjecture that (R, 3) and (R, 3') are

homeomorphic. However, let i be the identity function on R, and

let / be defined by extending linearly a fixed one-to-one correspond-

ence between 77 and 77'. It can be proved that / is not continuous

and that i is not necessarily continuous, where both are considered

as functions from {R, 3) to (R, 3'). Hence, it does not seem that a

natural homeomorphism exists, and it is necessary to have a proof

that applies to either possibility for 77.

(b) There are several other topologies for R whose properties

complement those of 3. Define 3(N, e) to be the group topology on R
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generated by all V(K, e) with |£| <N and e>0, and define 3(N)

as the group topology generated by all V(K, oo) with \K\ <X. With-

out any assumptions about the continuum hypothesis one may prove

that 3(Ko, «) is not normal, that 3(2"°, e) is normal (and paracom-

pact), and that 3(K) is normal (and paracompact) for any K. More-

over, for 3(fc<) with Káfcíi, it may be proved that this topology is

Lindelöf by the methods of [l, Proposition 3j. (A space is Lindelöf

if each open cover has a countable subcover. See [2, 5.Y] for a proof

that Lindelöf implies paracompact.)

(c) Note that it is also true that 2s° = Ni if and only if (£, 3) is

paracompact; but a proof of this may be constructed which is not so

involved as that for Theorem 1.
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