A PROPERTY OF THE REAL LINE EQUIVALENT TO
THE CONTINUUM HYPOTHESIS

H. H. CORSON

1. Introduction. Edwin Hewitt has asked if the real line R is a
normal topological space (see below for the definition of this term)
when it is given the topology 3 which is defined in the following way.
Fix a Hamel basis H for R over the rational numbers. For x€R and
eE H, let x, denote the ath coordinate of x in its expansion with re-
spect to H. Now, for each countable subset K CH and each € such
that 0 <e=< o, define

V(K,e) = {xER: |2| <eand =0 for a € K}.

Then 3 is the group topology on R that has the collection of all pos-
sible V(X €) as a basis of open sets at 0. The space (R, J) is obviously
completely regular, since it is a topological group. Theorem 1 answers
Hewitt's question. Before stating the theorem, let us recall that a
topological space X is normal if any two disjoint closed sets have dis-
joint neighborhoods.

THEOREM 1. The real line R under the topology 3 defined above is nor-
mal if and only if the continuum hypothesis is true.

2. Proof of sufficiency. First a lemma is stated, next it is pointed
out how the lemma implies the desired result, and finally a proof for
the lemma is given. For use in stating the lemma, recall that a collec-
tion U of disjoint subsets of a topological space X is discrete if
x&€ (W)~ implies that x& U~ for some U&U. (The bar indicates
closure in X.) As for notation, we adopt the convention that ¢ and j
run over all integers =0, and » runs over all integers =1.

LeMMA 1. If the continuum hypothesis 1is irue, then there exist a
countable number of subsets R; of R and a countable number of collections
Vs such that

(1) R=U; Ry

(2) for xER;, there is a unique V; ,EV; with xE V; 4;

(3) for xER;, YER;, Vi NViy= if x#y;

(4) for each i, V; is a discrete open collection.

Let us show how Lemma 1 is applied. From [2, 5.32] it will be
seen that it is sufficient to prove that (R, 3) is paracompact. This
latter term may be defined as follows. X is paracompact if each open
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cover of X has an open refinement consisting of a countable union of
discrete collections. (See [2, 5.28].) Now, if U is an open cover for R,
choose for each x € R a U, € U with x € U,. Then define W;
= { VieM U,:xER;}. It is easy to verify that W=U; W; has the
desired properties.

Proor orF LEMMA 1. In the way of notation, define for each integer
120

T; = {x & R:x, # 0 for exactly 7 of the ¢ © H}.

It will be proved that there are a countable number of subsets T, of
T; and a countable number of collections W;,, such that

1) Ti=Uqa Tin;

(2) for x& T a, there is a unique Wa(x) EW;.» with xE W, (x);

3) for xE T and yET; n, Walx) \Wa(y) = if x5#y;

(4) for each n, W, . is a discrete open collection.
(Note that in (4) we mean discrete and open with respect to (R, 3).)
It is not difficult to verify that Lemma 1 is a consequence of this.

We begin by using the continuum hypothesis to number the Hamel
basis H from 1 to (but not including) @, where Q is the first uncounta-
ble ordinal. For 12a <, a(e) will denote the ath a€H. Also, for
x7#0, let 6, be the largest ordinal & such that x,¢.) 0. Now introduce
arelation on R by defining ¥y <x to mean that x>y, but y,#x, only if
x,70 and y,=0. Note that each x has a finite number of predecessors.

For x50, define

W(x) = {ZER: za(a) =x¢(¢) fOr aésg} H
and for each #n, define
Walx) = {zE W(x): [z — y| > 1/nforally < x}

When >0, let W;n={Wa(x): *€ T}, and set T;n=[UW;.]NT.
When =0, let To,.= {0} for all #, and let W,,.={R}.

Let us check that these sets satisfy (1)—(4) above. This is obvious
when ¢=0; hence we suppose that +>0. Clearly, for x& T}, one can
choose 7 so large that Ix— yl >1/n for all y<x. Hence, for this #,
X E W, (x) EW; .0, and (1) follows from this. Moreover, if x and y are
both in T, W(x)N\W(y)# & only if x=y; hence, for x and ¥ in
Tiny Wa(x)NWa(y) # & only if x=y. Property (3) is a consequence
of this, and (2) follows from this and the definition of T}, ..

In proving (4), let us first verify that W; . is an open collection.
Note that each W(x) is open, since W(x)=x-+4V(K, =), where
K= {a(a) : aéﬁ,} . Also, since each member of the usual topology for
Risin 3, U= {zER: |z—-y| >1/n for all y<x} is in 3. Hence Wa(x)
= W(x)NU is open.
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Finally, to show that W;, is a discrete collection, suppose
2E(UW;,)~. Now 2& T, for some integer p. If p=1, then let y be
defined by choosing y,=2, except for the p—1 largest a for which
2,70 (where “largest” refers to the ordering of H); for the excepted a,
let y,=0. For this y, 2EW(y) and y& T;; hence W(y) is a neighbor-
hood of z which meets only one member of W; ., namely W,(y)-

All that remains is the case p <s. It will be proved that, for z and p
as above, this case cannot occur. Suppose 2E Ty, p <1, and let

U={yeW@:|y—3z| <1/a}.

We will prove that U is a neighborhood of z which does not meet
UW;.». Suppose to the contrary that UNW,(x) % & for some x& T3,
and choose a yE€ UNW,(x). Note that z<x, since UNW,(x) =
implies that W(2)N\W(x) # &, and the latter implies that Xa(a) = 2Za(a)
for all «=<9.. This leads to a contradiction because y& W,(x) and
z<x imply |y—3z| >1/x; but yE U implies | y—z| <1/n. (Note that
U is open for the same reason that each W,(x) is open.)

COROLLARY. Assume the continuum hypothesis. Then every subspace
of (R, 3) is paracompact, and hence normal. Also, every subset of (R, 3)
isan F,. (An F, is a subset which is the union of a countable number of
closed subsets.)

Proor. Note that Lemma 1 remains true if R is replaced by a sub-
space 4 of R. Hence 4 is paracompact as above. Also, observe that
the properties of U; imply that each subset of R; is closed. Hence
A=U; (R,NA) with each R;NA4 closed in (R, 3).

REMARK. The last assertion of the corollary can be derived without
the continuum hypothesis by an argument similar to that appearing
in the first paragraph of the proof of Lemma 2 in the next section.

3. Proof of necessity. Throughout this section it will be assumed
that N, <28, We will suppose that (R, 3) is normal and argue for a
contradiction. This will follow a sequence of lemmas.

Let ¢ be the least integer such that T is of second category in
R—where, from here on, R will denote the real numbers under their
usual topology.

LeEmMA 2. X =U; Ty,; is a normal subspace of (R, 3).

Proor. It will be proved that X is an F, in (R, 3). It is sufficient
to show this, since it is well known that an F, in a normal space is
normal. Define, for integers j and #n, Tj .= {xG T;: ‘x—y| >1/n for
all y<x}. (The T, of the last section could have been defined this
way.) One may easily verify that T;=U, T} .. Hence it will suffice to
prove that each T, is closed in (R, 3).
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To accomplish the latter, first suppose that y&E T\ T;,» (R=j) and
K={aCH:y,#0}. Then y+ V(K, ») is an open neighborhood of y
which does not meet T .. Now assume that y& T (k<j) and that K
is as above. Then y+ V(K, 1/n) =V does not meet Tj,. In fact, if
x& TNV then y,=ux, for all b such that y,70. Hence y<x, but
]x—y] <1/n. 1t follows that xE'T; ..

For convenience, let us suppose that, whenever a rational number is
written in the form m/n, we have m and # relatively prime. Define 4
to be the set of xE€ T; such that, for any a, the m in the expression
x,=m/n is even. Let B=T,\A. It follows by an argument similar to
part of the proof of Lemma 2 that each subset of T is closed in X.
Hence 4 and B are both closed in X. By the normality of X, one may
choose disjoint U and V, each open subsets of X, such that ACU
and BCV.

By the definition of the topology 3, one may choose, for each
xEAVUB, a countable K(x) CH and e(x)>0 such that V(x)
=[x+ V(K (x), €(x)) JNX is contained in U if xEA4, or in V if xEB.
Using this notation we will now describe some of the properties of 4
and B.

LeEMMA 3. A is of second category in R.

Proor. Either 4 or B is of second category in R, since AUB=T;,,
For xEB, 2"xC A if n is large. Let B,={xEB:2"x€A}. If B is of
second category in R, then so is B,, for some 7. Hence 4, which con-
tains 27,B,,, is of second category in R.

For SCR and KCH, let S(K) = {*E€S: x,=0 when aEK}.

LeEmMA 4. If SCT; is of second category in R, then S(K) s of second
category in R for each countable subset K of H.

Proor. Let gK denote the group generated by K. Suppose
xEgK\{0}. Let S.=(S—x)(K). Since S.C{T,:0=r<i}, S, is of
first category in R by the minimality of 7. Hence S.+x is of first
category in R. Since K is countable, T=U{S,+x: ngK\{O} } is of
first category in R. Consequently, S(K) =S\T is of second category
in R.

For each set S let | S| denote the cardinality of S. Let us say that
an interval I (all intervals which occur here will be open) is No-filled
with a subset S of R if, for each K CH, | K| <N, one has | S(K)NI|
=N,

LEMMA 5. If I is Ro-filled with a set S which is the union of a countable
collection of S,, then for some n, there are arbitrarily small intervals
contained in I which are Ns-filled with Sn,.
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ProoF. Suppose to the contrary that, for each #, there is some
0(n) >0 such that, given an interval J of length less than 6(n), one
may choose K;CH with the property that lJf\S,.(KJ)| <N, and
IKJI <N:;. For a fixed #, let J1, Jz, - - - be a countable cover of I by
intervals of length less than 6(n). Define K, as U; K;;, and K as
Un K. ThenS.(K,) CN; S.(Ky,); hence Sn(Kn) NI CU; (Sa(Ks,)NJ5),
and | Su(K.)NI| <R, Also, S(K)CUn Sa(K.); hence |S(K)NI|
<|Ua (Sa(Kn)NI)| <N;. Since | K| <N., this contradicts the as-
sumption that I is No-filled with S.

LeMMA 6. Each interval I is No-filled with B.

Proor. Suppose | K| <N;. Then |B(K)| >N; as one may easily
verify. Let x€R\ {0} be chosen such that each interval containing x
also contains N, elements of B(K). Choose a rational number 7 of the
form m/2» (n>0) such that rx&I. Note that »B(K) CB(K), since m
and 2* are relatively prime. Hence IB (K)NI | z|rB(K)NI| zN..

For the remainder of this section, let # be an integer, and let I be
an interval, such that # and I have the properties of the next lemma.
(For the statement of Lemma 7, recall the definition of e(x) in the
expression of V(x).)

LEMMA 7. There are an integer n and an interval I such that (1) if
A.={xEA: e(x)>1/n} then AN is of second category in R, (2) I is
N-filled with B, where B,= {xEB: e(x)>1/n}, and (3) I is of length
less than 1/n.

Proor. For (1) choose an integer p such that 4, is of second cate-
gory in R. It is not difficult to show that, for some interval J, 4,N\L
if of second category in R for each subinterval L of J. Now J is
N,-filled with B by Lemma 6, and by Lemma 5 there is a ¢ such that
there are arbitrarily small subintervals of J which are N,-filled with
B,. Let n=max(p, ¢). Choose I to be a subinterval of J such that (3)
is satisfied for I and (2) is satisfied for B, and I. It follows that (1),
(2), and (3) are satisfied for » and 1.

This completes the sequence of lemmas, and we now observe the
following facts:

() If x€A.IB)INI, then V(x)NI=W(x)NI, where W(x)
=[x+ V(K(x), ©)]NX. For suppose y&W(x)N\I; then Iy—xl
<1/n<e(x), and y& V(x)NI.

Gi) If yEWEINW(x') for xEANI and x'EB.NI, then there
is some Yy EW(x)NW(x')NI. In fact, let a€EH\(K(x)\UK(x')) be
chosen such that y,=0. Now pick a rational number 7 such that
y'=y+racl. It follows that y’ has the desired property.
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(iii) For each x€A.NI and each x' €B.NI, W(x)N\W(x')=. In
fact, suppose yEW(x)NW(x’') for some choice of xEA4,MNI and
x'€B.N1I. Pick y€X as in (ii). Then by (i), ¥ EV(x)NV(x'),
which contradicts the assumption that UNV=¢.

This section will be completed by proving that (iii) is false. To
accomplish this, choose by induction on « an

2(a) € I N A)U{Kx(B):8 < a})
for 1 =a<Q such that

) (x(a))a = 0 if (x(8))s = 0 for any 8 < a.

This is accomplished by using Lemma 4 and the fact that 4,MI is of
second category in R. Now pick x¢EB.MNI such that (x¢).=0 if
either aCU{K(x(a)): 1=a<Q} or (x(a))a#0 for some 1=a<q.
This is accomplished by using the fact that I is Ns-filled with B.,.

We will contradict (iii) by proving that, for a sufficiently large
a, W(xo)N\W(x(a)) = . In fact, pick « large enough so that (x(a))s
=0 if either a €K (x9) or (x0)a#0. (This is possible because of condi-
tion (8).) One may verify that, for this a, xo+x(a) €E W(xe) N W (x(r)).
This completes the proof.

4. Remarks. (a) The first three lemmas of §3 can be either much
simplified or omitted when the Hamel basis is of second category in
R. However, this is not always so; for instance, a maximal linearly
independent subset H of a set which is both of positive measure and
of first category in R can be proved to be a Hamel basis. On the other
hand, V. L. Klee has pointed out to me that a method due to F. B.
Jones [Bull. Amer. Math. Soc. vol. 48 (1942) pp. 115-120] demon-
strates the existence of a Hamel basis H’ which is of second category
in R.

As in §1, define a topology 3 on R using H, and a topology 3’ using
H', where H is of first category in R and H’ is of second category in
R. One might reasonably conjecture that (R, 3) and (R, 3’') are
homeomorphic. However, let ¢ be the identity function on R, and
let f be defined by extending linearly a fixed one-to-one correspond-
ence between H and H’. It can be proved that f is not continuous
and that 7 is not necessarily continuous, where both are considered
as functions from (R, 3) to (R, 3’). Hence, it does not seem that a
natural homeomorphism exists, and it is necessary to have a proof
that applies to either possibility for H.

(b) There are several other topologies for R whose properties
complement those of 3. Define 3(R, €) to be the group topology on R
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generated by all V(K, € with |K I <N and €>0, and define 3(N)
as the group topology generated by all V(K, «) with IK | <N. With-
out any assumptions about the continuum hypothesis one may prove
that 3(No, €) is not normal, that 3(2®e, €) is normal (and paracom-
pact), and that 3(N) is normal (and paracompact) for any N. More-
over, for 3(N) with R <N,, it may be proved that this topology is
Lindelof by the methods of [1, Proposition 3]. (A space is Lindelsf
if each open cover has a countable subcover. See [2, 5.Y] for a proof
that Lindelsf implies paracompact.)

(c) Note that it is also true that 2%=RN, if and only if (R, J) is
paracompact; but a proof of this may be constructed which is not so
involved as that for Theorem 1.
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